
AD-Al84 127 A SURVEY OF OBJECT ORIENTED LANGUAGES IN PROGRAMMING 1/2
ENVIRONMENTS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
H HAAKONSEN JUN 87

UNCLASSIFIED F/G 12/5 NLEIIEIIEIIIIEI
EllEEEllEIIhEE
ElllElhllllhIE
EhlllhlElllhhE
EhllllhlllhhlE
llElllhIIEIhhE

1lii ,lim_12o
11111 1.011112.2

1 1 1 =11111 =

11111 I.25 -A1 14 111 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS I963-A

o

I l -- --.- . .., " • -'" : ,.I

TI FILE CJ"

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ELECTE1
I EP 0 3 1987

THESIS
A SURVEY OF

OBJECT ORIENTED LANGUAGES
IN PROGRAMMING ENVIRONMENTS

by

Harald Haakonsen

June 1987

Thesis Advisor: Bruce J. MacLennan

Approved for public release; distribution is unlimited.

87 8 g 023

unclassifiedS c-,RrY CLASS,P.CATON OP Tw',S PAd 7'. I
SC0REPORT

DOCUMENTATION PAGE

ij REPORT SECURITY C.ASSIFICATION 1b RESTRICTIVE MARKINGS

unclassified
k2a SFC R'TY CLASSIFICATION AUTHORITY I DISTRIBUTION /AVAILAILITY OF REPORT

Approved for public release;
2oE, O 5C.ASSFCAT.oN, DOWNGRADNG SCHEDULE distribution is unlimited.

* 4 -ERFORMNG ORGAN.ZATION REPORT NUMBER(S) 5 MONITORING ORGANiZATON REPORT NUVSEPS)

6a NAE OF PERFORMING ORGANIZATION 6t OF; CE SYMROL ?a NAME O; MOWTORING ORGANLAT..ON

Naval Postgraduate School (Ifappi(aOe) Naval Postgraduate School1 52

6 ADDRESS Ciry Ste and ZIPCode) 7b ADDRESS (Cry. State. ard ZIP Code)

Monterey, California 93943-5000 4onterey, California 93943-5000

Sa %ANE OF FuNDING,SPONSORiNG [Ib OFFICE SYMBOL 9 PROCUREMENT NSTRuMENT DEN',FCArION %UMER

ORGANIZATON (if Applicable)

3c ADOZIESS (Cy. Slate and ZIP Code) 10 SOURCE O FUNDING NUMBERS

PROGRAM PROJECT TASK WORK _Nir
ELEMENT NO NO NO ACCESS ON NO

. .cue Security Cl.,u,,caon) A SURVEY OF OBJECT ORIENTED LANGUAGES IN PROGRAMMING

ENVI RONMENTS

'ESC,.A, XUT ORIs) Haakonsen, Harald

3 ' R. * oRr *b R'ME COVERED '4 DATE OF REPORT (Year Month Day) 'S PAC t '

Master's Thesis FROM _O__ o 1987 June 105
'3 S M, ARV %O

T
AT:ON

'"(OSAr CODES 18 SuBECT 7ERMS (Continue on reverie of necesuar and ident, by blO(k nurmber

_D 6ROuP SuB.GROuP object oriented programming; Smalltalk; human-
computer interface; interactive integrated pro-
g rnrmmina tenv i rinnmi-nlt

9 AS'-RAC (Continue on reverie if neceisary and identify by block number)

This thesis addresses object oriented programming languages; and a restric-
tive definition of object oriented programming languages is presented and
defended. Differences between programming languages are discussed and
related to interactive integrated programming environments. Topics re-
lated to user friendly interface to the computer system and modern pro-
gramming practice are discussed. The thesis especially addresses fcatures

" in object oriented programming languages that are important when a user
friendly interactive integrated programming environment is designed. Some
future research areas are suggested.

. -% 0% 3 N VALABi.iTY O
F

ABSTRACT 21 ABSTRACT SECURITY CLASSFIC.AIO%

3 'C..ASS4 EDUNL MITED 0 SAME AS MIT ODTC ASERS unclassified
,a ','. OF RESPONS,BLE %NDI,0UAL 22b TELEPo4ONE (Include Area Co) 22c C;' (t S'M8J.

Prof. Bruce J. M1acLennan (408) 646-2353 Code _)2311
DO FORM 1473, $4 MAR 83 APR Vedo ay be usec -otteaised SECURITY CLASS ;-CAT 2% 0 ;- S P,E

All 01lr ed,tomi art obiolett unc lass if ied
1

% 4, - %. -
" - ' .". " " "" " ' " " "' " " " " " " " " ." ",, " 'e " r " . € ." " " ," " "" "' " . " . " ': "" " - " " '" "" " " " " " " "

6

Approved for public release: distribution is unlimited.

A Survey of
Object Oriented Languages

in Programming Environments

by

Harald Haakonsen
Lieutenant Commander. Norwegian Navy

Norwegian Naval Academy, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

iU

Author: -

Approved b:aako
sen

Bruce .Mac ennanThesis Advisor

M r d o ~ r a d e~ v rh d R e a d e r

Vince Y. Lum. Chairman.
Depart fient of Computer Science

Dean of Information and Policy .c$

4iAI

ABSTRACT

This thesis addresses object oriented programming languages: and a restrictive
definition of object oriented programming languages is presented and defended.

Differences between prograrmning languages are discussed and related to interactive

integrated programming environments. Topics related to user friendly interface to the

computer system and modem programming practice are discussed. The thesis

especially addresses features in object oriented programming languages that are

important when a user friendly interactive integrated programming environment is

designed. Some future research areas are suggested.

DII

t--.-
t .~ t i 3 L

t'!

TABLE OF CONTENTS

INTRODUCTION ... 1I1
A. BACKGROUND......................................11
B. OBJECTIVES .. 1I1

-~-C. THE RESEARCH QUESTIONS..........................1I1
D. SCOPE AND ASSUMPTIONS 12

1. Scope ... 12
2. Assumptions 12

E. LITERATURE REVIEW AND METHODOLOGY 12
1 . Literature Review 12

2. Methodology...................................... 13
F. SUMMARY OF FINDINGS 13
G. ORGANIZATION OF THE STUDY....................... 13

I. INTRODUCTION TO PROGRAMMING LANGUAGES.......... 15
A. BACKGROUND FOR PROGRAMMING LANGUAGES 1.5

1. What is a Programming Language?9 .. 15

2. The Purpose of a Programmning Language 16
3.What are the Criteria for "Good" Programmning

Languages?9 .. 17
B. INTERFACES IN A PROGRAMMING ENVIRONMENT......18

1. Interfaces in Programming 18
2. Dimensions in User Interfaces......................... 20

C. THE SEARCH FOR A BETTER SOLUTION 20
1. Procedural versus Nonprocedural Programm-ing

Languages.. 20
2. What do We Want in the Future....................... 22

D. WHAT KIND OF HELP CAN HARDWARE OFFER 23
1. Hardware Cost and Performance, and Its Implications 23
2. Visual Interfaces................................... 24

4I

3. Firm ware .. 25
E. SUMMARY OF THE CHAPTER......................... 25

Ill. HUMAN LIMITATIONS AND RELATED TOPICS 26

A. BACKGROUND...................................... 26

B. HUMAN LIMITATIONS............................... 27

1 . Variations in Performance between Programmers 27
2. The Cost of Large Complex Software Systems 28

3.User Interface Performance Issues...................... 28

C. COGNITIVE SCIENCE 29

1. Human Memory................................... 29
2. The Learning Process 30
3. Thinking and Reasoning 31

D. WHAT IS "MODERN PROGRAMMING PRACTICE"?932

1. Background....................................... 32

2. Modern Programming Practice 32
3. Why use Modern Programming Practice' 32

E. WH-AT DOES'"FRIENDLY" MEAN? 33
1. User Friendly Interfaces 33

2. Interactive Systems................................. 34
3. How do We Learn to use an Interactive System 35

F. SUMMARY OF CHAPTER 36

IV. DIFFERENCES BETWEEN LANGUAGES)7

A. PROCEDURAL VERSUS NONPROCEDURAL............... 3

B. PROCEDURAL LANGUAGES...........................8S

1. Historical Background...............................38

2. How do we Cope with the Complexity of Programming?9 39
3. ADA an Example of an Imperative Language 3. 9

4. Pure LISP an Example of an Applicative Language 4. 0

C. NONPROCEDURAL LANGUAGES 42

1. Historical Background............................... 42

2. Prolog an Example of Logic Oriented Language 43

3. Object Oriented Languages 44

D. SUMMARY OF THE CHAPTER......................... 46

X .4

V. WHAT IS AN OBJECT ORIENTED LANGUAGE? 48

A. HOW TO DESCRIBE AN OBJECT ORIENTED
LANGUAGE?".. 48

1. General Description................................. 48
2. Differences between Object and Procedure Oriented

Programming...................................... 49

B. TERMINOLOGY USED................................ 51

1. General Background 51
2. Objects .. 53

3. Messages .. 5 4
4. Classes .. 54

5. Instances... 55
6. Methods... 5

C. INFORMATION HIDING.............................. 56

1. Definition .. 56
2. Information Hiding in Object Oriented Languages 56

D. DATA ABSTRACTION 57

1. Definition .. 57
2. Data Abstraction in Object Oriented Languages 58

E. DYNAMIC BINDING................................. 59

I. Definition .. 5 9
2.Dynamic Binding in Object Oriented Languages 59

*F. INHERITANCE 60
I. Definition .. 60
2. Inheritance in Object Oriented Languages 60

G. SOME ADVANTAGES AND DISADVANTAGES IN
OBJECT ORIENTED PROGRAMMING................... 61
I. Advantages 61

2. Disadvantages..................................... 62
H. SUMMARY OF THE CHAPTER......................... 62

VI. INHERITANCE .. 64

A. BACKGROUND...................................... 64

B. INTENSION VERSUS EXTENSION...................... 64

C. INHERITANCE IN GENERAL.......................... 65

6

UV

1. Inheritance versus Data Abstraction 65

2. Subclassing 66
3.Inherited Instance Variable 69

4. Programmer's View of Inheritance...................... 70
D. MULTIPLE INHERITANCE 70

1. Overview 70
2. Graph Oriented Multiple Inheritance Solution 73
3. Linear Chain Multiple Inheritance Solution 74
4. Tree Conversion Multiple Inheritance Solution 75

E. SUMMARY OF THE CHAPTER I............ 75

N'II. INTERACTIVE PROGRAMMING ENVIRONMENT 77
A. WHAT IS AN INTERACTIVE PROGRAMMING

ENVIRONMENT? .. 77
1. Definitions 77
2. Impact of Tools.................................... 78
3. What is so Special about Programming Environments 79

B. IDENTITY OF OBJECTS............................... 80
1. Definition of Identity................................ 80
2. Identity in Interactive Programming Environments 80
3. What Language to use in an Interactive Programmn-ing

Environment 81
4. Incremental Program Development..................... 82

C. HOW TO PUT THE USER IN CONTROL S3
D. LISP IN INTERACTIVE PROGRAMMING

ENVIRONMENTS.................................... 84
1. Why use Lisp 84

2. The Interlisp Programming Environment................. 84
E. AN OBJECT ORIENTED INTERACTIVE

PROGRAMMING ENVIRONMENT...................... 87
1. Why use Smalitalk.................................. 87

F. SUMMARY OF CHAPTER 90

ViII. CONCLUSIONS AND RECOMMENDATIONS 92

A. CONCLUSIONS...................................... 92
B. RECOMMENDATIONS 93

7

1. W hat Can be Done Now 93

2. Future Research A reas 93

APPENDIX A: SMALLTALK-80 TERMINOLOGY 94

APPENDIX B: TOWER-OF-HANOI IN PROLOG 96

APPENDIX C: TOWER-OF-HANOI IN LISP 97

APPENDIX D: TOWER-OF-HANOI IN PASCAL 98

APPENDIX E: TOWER-OF-HANOI IN SMALLTALK-80 99

LIST O F REFEREN CES ... 100

INITIAL DISTRIBUTION LIST .. 104

~8

_.N

:4-

I iL R

LIST OF TABLES

1. EXAMPLE OF PROCEDURAL ORIENTED PROGRAMMING 502. EXAMPLE OF OBJECT ORIENTED PROGRAM.MING .;.........50

9

4

LIST OF FIGURES

4 .1 Interfaces in a Programming Environment.......................... 19
3.1 Modeling Domains in Programmaiing 31
3.2 User Friendly..34

5.1 Inheritance Example .. 61
6.1 Without Intersection in Class Membership 67

6.2 Subclasses.. 68
6. 3 Multiple Inheritance .. 71
6.4 Example of Multiple Inheritance Acyclic Graph...................... 72
6.5 Example of Altered Graph Oriented Multiple Inheritance 73
6.6 Example of Linerized Chain Multiple Inheritance..................... 74
7. Incremental Development 82

10

I. INTRODUCTION

A. BACKGROUND

Tradiionally programming languages have evolved towards a higher level of

abstraction offered to the programmer. Current programming languages have removed

the prograrmmer from the hardware level of the machine, and offered him her increased

semantic power of the language which better captures the programmer's concept, but it

is not vet normal to work in a fully interactive integrated programming environment.

The problems we want to solve with computers steadily increase in size and

complexity. We often talk about "the software crisis," and this can be viewed as a sign

that we are reaching the limit of what we currently are able to handle. The complexity

barrier is pushed further and further. but we still need to create the software % need in

the future to solve these difficult problems. Traditionally the tools in the programming

environment have been made by programmers for the benefit of programrr, n2. The

management's need for tools has therefore not fully been recognized by developers who

began the implementation of interactive integrated programming environments.

B. OBJECTIVES

The objective of the thesis is to show some of the aspects that are relevant in the

,development of interactive integrated programming environments, especially how

cbjcct oriented programming languages can make our work easier and more effcient.

C. THE RESEARCH QUESTIONS

What is an object oriented programming language, and what is different

compared to other programming languages? How can we develop a more user friendlh

.rogrammrrng environment? What makes it user friendly? What kind of programning

environments do we have today? Are any programming languages better than others

to build user friendly interactive integrated programming environments?

II

6,J.

D. SCOPE AND ASSUMPTIONS

1. Scope

The relevant material for this thesis is vast, so a brutal restriction of the

subject has been performed. The discussion is mostly kept on a single user system level,

in order to reduce the complexity. Typical representatives from each major type of

I progran'-ing languages are studied, and used for comparisons. The sample programs

in the appendices are all written in programming languages available on persona!

computers, e.g. Apple's Macintosh.

2. Assumptions
The thesis assumes that the reader has some basic knowledge of computer

science, therefore the cormonly used expressions are not defined here. When it comes

to the discussion of object oriented programming languages, and inheritance, no

backaround knowledge is assumed. The subjects are covered more in depth with

explanations of new concepts. The discussion is based on the relevance to designers

and programmers, not so much on management's needs.

The future seems to expose a growing number of people to computer systems,

and working environments where computer systems are an integrated part of the

whoe. Therefore the discussion concentrates on the impact on the average user who is

not necessarily a computer specialist.

-.

E. LITERATURE REVIEW AND METHODOLOGY

1. Literature Review

This thesis is a review, combining work from many sources. Most of the

literature comes from the academic environment, and each source normally covers only

a small research area. Especially when it comes to literature about object oriented

programning languages there seems not to be a clearly defined terminology.

"V.

12

'4i

2. Methodology

The methodology used is based on an extensive study of literature available in

dtfferent areas: programming languages. software engineering, cognitive science.

computer science, human interfaces. etc. The purpose of the study is to get a feeling

for what's involved in interactive integrated programming environments.

Small sample programs of the Tower-Of-Hanoi problem are written in

different programng languages (i.e. Prolog, Pascal, Lisp. and Smalitalk) in order to

-et "hands on" experience, and to better understand the differences between the

languages and environments.

F. SUMMARY OF FINDINGS

The thesis concludes that the structure of the language defines the boundaries of

the thought of a human being, and that this is valid also for programming languages

and progra-rLrng environments. Object oriented programming languages have four

:e a-ures: information hiding, data abstraction, dynamic binding, and hierarchy of

:nheritance. This kind of object oriented programming language is well suicd for

b-u.idin. interactive integrated programming environments that are user friendly.

Today interpreted programming languages like Lisp and Smailtalk are the languages

:hat most easily facilitate customizing of an interactive integrated programming

environment to the users needs.

G. ORGANIZATION OF THE STUDY

The first chapters discuss various programming languages, especially the

differences between them. The traditional programming languages are not covered in

depth, but object oriented languages (Smalltalk) are discussed in more deail!. The

•hesis establishes what minimum criteria a programming language must have in order

to be a real object oriented programrmng language. Some of these criteria are covered

in more detail in order to give a better understanding of what object oriented

programrming languages have to offer the designers'programmers compared to other
,." .an£-a~es.

13

9v

Next the comparison is brought a step further, and looks upon the interaction

and integration in some sample programming environments. Some of the features in

the environments are covered in more depth to bring forward what has been. an' still

s. important for the evolution of the interactive integrated programming environments.

The thesis ends up with conclusions, and some recommendations for future interactive

inc2raied rrogrammr,nng environments.

-14

',.

.

14

'4

1I. INTRODUCTION TO PROGRAMMING LANGUAGES

A. BACKGROUND FOR PROGRAMMING LANGUAGES

1. What is a Programming Language?

The history of programming languages goes back to 18-6 when Lady Lovelace

programmed Charles Babbage's machine [Ref. I]. In doing this she showed that she

was thinking of a symbolic system as a language. Many would say that it was her

knowledge of mathematics, and not her knowledge of poetrx', that led her to this

abstract: -n. Mathematical entities are abstrac:ions that do not change over time. and

the mathmatical theories are well accepted and understood.

Computer programming is a complex human activity, and the programming

language is the tool used to get the hardware to do what the programmer wants done.

Prograrrning languages have changed over ime. In the beginning it was machine

,,,,age, but as the complexity of the tasks we wanted the computer to solve for us

crew. we got symbolic assemblers, higher level languages, and symbol manipulation

ranguages. We have pushed the complexity barrier farther and further as human beings

'av: tried to understand. and write, programs an order of magnitude larger then xhat

:as been feasible previously.

The focal point in ,he computer science problem solving process is still the

programrrirg language and the programming environment. Features in the

prosranurning language can afTect the way a programmer approaches the design of a

solution to a particular problem. A linguistic theory, the Sapir-Whorf hypothesis

[Ref. 21, states that the structure of a language defines the boundaries of the thought of

a human being. There is a strong interaction between languages and thought. The

,tructure a language presents for manipulating words and the vocabulary available for

representing ideas constrain the thoughts that can be easily and accurately represented.

In addition the structures and patterns that characterize people's thought process affect

how they are able to use the facilities provided by a programming language. In other

words, a limited programming ',anguage will be a handicap for the programmer who

tries to realize his her full problem solving potential, so that he she must improvise to

get :n acceptable solution to the problem he she wants to solve.

15

1A

The enormous variations in symbols, constructs, and syntax observed among

natural languages is also true of computer programming languages. Computer

programming language differences range from the long compound words of Cobol to

the symbolic brevity of APL, from the massive size of Ada to the compactness of

Pascal.

2. The Purpose of a Programming Language

Programming languages are used to write programs in order to get some

computer hardware to perform a useful function. These programs have a dual function.

communication between human and machine, but also human to human

communication. A programming language must therefore provide all the necessary

interfaces with the hardware of the computer system; at the same it time must also be

able to capture the ideas of the programmer. High levels of abstraction increase the
semantic power of the programming language, and capture better the problem solving

concepts of the programmer. Programming is not a branch of mathematics: it is a

unique form of communication in which human beings take an active role and

Smachines often a passive role.

The programming language, with its structure, can help us define the

boundaries of our thoughts. We can tailor a language to suit our special needs, such as

APL for mathematics or special database languages (query languages) for large

collections of data, in order to reduce the distance between the user and the wav the

user thinks about the problem.

One way of classifying programming languages is by the extent to which they

force one to write in machine level procedures, rather than in natural !anguages. This

scale runs from machine languages and assembly languages, through high level

prcgramming languages, througn query languages, to natural language. As one moves
up the scale. the structures in the programming language take over more and more of

the details of integrating the software with the hardware. Programming languages at

the upper end of the scale make computers more accessible to more people, mainly

because they are not forced to understand the hardware in order to interact with the

computer system.

16

.I I 1 !!ll . . .!I , . . . - - .. -. --. "

3. What are the Criteria for 'Good" Programming Languages?

A perfect programming language must be ideally suited for all situations, for

all users, for all applications, and for all computer systems. Today the programming

language, in addition, must be unambiguous, because the current state of technology

has problems letting the context decide the accurate meaning of the statements.

To design a language that is easy to understand and use, and at the same time

is powerful, we must accept a tradeoff between the principles such as the following

from MacLennan's ilist [Ref. 3: p. 526-5271:

1. Abstraction: Avoid requiring something to be stated more than
once; factor out the recurring pattern.

2. Automation: Automate mechanical, tedious, or error prone
activities.

3. Defense in depth: Have a series of defenses so that if an error is
not caught by one, it will probably be caught by another.

4. Information hiding: The language should permit modules designed
so that (I) the user has all of the information needed to use the
module correctly, and nothing more: (2) the implementor has all of
the information needed to implement the module correctly, and
nothing more.

5. Labeling: Avoid arbitrary sequences more than a few items long:
do not require the user to know the absolute position of an item in
a list. Instead. associate a meaningful label with each item and
allow the items to occur in any order.

6. Localized cost: Users should pay for what they use: avoid
distributed cost.

7. Manifest interface: All interfaces should be apparent (manifest) in
the syntax.

S. Orthogonality: Independent functions should be controlled by
independent mechanisms.

9. Portability: Avoid features or facilities that are dependent on a
particular machine or a small class of machines.

10. Preservation of information: The language should allow the
representation of information that the user nght know and that the
compiler or interpreter might need.

11. Regularity: Regular rules. without exceptions, are easier to learn.
use, describe, and implement.

12. Security: No program that violates the definition of the language.
or its own intended structure, should escape detection.

17

4

.(,-

13. Simplicity: A language should be as simple as possible. There
should be a minimum number of concepts with simple rules for their
combination.

1.. Structure: The static structure of the program should correspond
in a simple way with the dynamic structure of the corresponding
computations.

1. Syntactic consistency: Similar things should look similar: different
things should look different.

16. Zero-one-infinity: The only reasonable numbers are zero. one, and
infinity.

It is at the present time not possible to design a programming language that is ideal in

all situations, for all users, for all computer systems, for all applications, even if we do

have the principles as in the above list. Today's programming languages are
specialized fcr specific areas of use, in order to keep the size and complexity within the

human being's limit. Some high level programming languages, like PL. I and Ada, are

designed to cover a wide area of applications, but the cost is increased size and

complexity.

B. INTERFACES IN A PROGRAMMING ENVIRONMENT

1. Interfaces in Programming

The environment in which a programmer performs his. her task includes: the

physical environment, the presence or absence of other people. the personalities of the

other members of the group, directives from management, learned progran-ming

methodologies, reference manuals for the progranuning language and the computer

system. All of these affect the programmer in his, her job. The term "programming

environment" can also be used more specifically, namely for a set of computerized tools

which ease the communication between the human being and the computer system

(Ref. 4: p. 559]. There are several interfaces in a programming environment that are

important for determining how the human being thinks and reacts [Ref. 4: p. 1421:

1. Between the user's conceptualization of the actual world he she wants to
represent and the programming language in which the user must descrbe this
world so that the computer system can simulate it.

2. Between the programming language and the visual presentation of :he language
to the user.

Is

I',

i.4,p t r.l,- f -, .- ,:. : ,s ',,i-d i I i i l i
l l i i ' ' '

3. Between the visual presentation of the language and the way the user must

physiaally indicate what action should take place.

V

. t, Figure 2.1 Interfaces in a Programming Environment.

These three interfaces are visualized in Figure 2.1 where: A is the real polar

bear to the simulated polar bear, B is the user interface to the computer, and C is the

simulation described in the computer.

The features of a programming language are the working tools for the

programmer. The programmer's work in finding a solution , affected by the tools

available to him. her. The interfaces are part of this, and , ead the programmer

towards certain problem solving methodologies, but it migh, "at it is not the best

methodology for this specific situation. People normally spena m ,,. time describing

data manipulation than they do describing control flow [Ref. 5: p. 184-215].

Traditional programming languages on the other hand provide for the development of

large control structures with embedded data manipulation. The natural human

tendency seems to be to start with data manipulation and add control flow as an

afterthought. Miller [Ref. 51 concludes that natural language is not adequate for

procedural specifications, but that a limited and structured subset of natural languages

might be more effective, and make the human-computer interface more friendly.

19

..
.. . . -.. -, " ,. o -" " -' - ..

2. Dimensions in User Interfaces

The programming environment must be accessible to the human being in

order to be of any use. The interface between the human and the system is complex.

and consists of a large number of design decisions. The most important interfaces are
listed next. with some relevant questions added [Ref. 6: p. 131:

1. Presentation; how are objects displayed and selected? Does the system translate

structure into text. i.e. pretty printing? Can it give more than one representation
of the same object. i.e. multiple views?

2. Command interface: how are commands invoked? Are the menus context
sensitive or not? Select then command, or command then select? Binding
commands to keys?

3. Extensibility; how can a user tailor the system to his/her needs? Does the
system support extensions? What is the performance of extensions? What kind
of mechanisms are used for the extensions?

-4. Window systems; what is the underlying technology for implementing the
interface? What is accepted in the windows? How does the system support the
windows? Is the window system compatible with other systems?

The list is only meant to give an idea of the complexity involved when

designing a user interface. The question of how to present a programming

environment to the user is not vet fully solved. Both the technology and the

methodology are inmature, and we have many contenders in the field. A very good

example. of new ideas in user interfaces, is the Macintosh personal computer produced

by A-nIe Computer Inc. This system shows how it is possible to give a novice user
access to a powerful personal computer system. The Macintosh is in many ways an

interactive environment that lets the user stay in control throughout the session. All

applications written for the Macintosh system are supposed to follow a standard

i defined by Apple) user interface in order to reduce the learning time for the user. It is

of course possible to violate these standards if one wants to.

C. THE SEARCH FOR A BETTER SOLUTION

I, Procedural versus Nonprocedural Programming Languages

In the early days of computers, a few decades ago. the job for the designers

and rogrammers was to convert manually existing systems to new technologies using

computers. Today we still convert and refine existing systems, but increasingly :he job

420

.4i

obj

is to apply technology to do something new, things we never dreamed the previous

s'stem could do. When we are not replacing an existing system, design no longer

follows directly from analysis. Analysis of what exists yields insufficient information to

design what will come to exist, so analysis and design become inseparable. The

problems we seek to solve using computer systems become more and more complex.

The traditional, obvious applications for computer systems, have already been done

ard newer applications are often:

1. More complex.

2. Less obvious.

3. Larger.

4. Used for longer period of time.

5. More likely to change over time.

This problem complexity, and the necessity to deal with many different details at one

time, makes programming generally very difficult. We are trying to master this

complexity by applying what has worked for us in the past. The programming

language designers have realized this, and have given us temporary relief, but ever-

time the problems we want to solve outgrow the current programming technique.

Symbolic assemblers, higher level languages, and symbol manipulation languages have

in turn pushed the complexity barrier back [Ref. 41. Programming language design is a

cumulative learning process, and programming is still a very young branch of

cngineering. The evolution of programming languages has resulted in solutions to a
broader class of problems, and even new approaches toward the solution of presently

unsolved problems.

We have different considerations that dictate the design of prograrnnir.g

languages [Ref. 3: p. 523]:

1. Uses (problems solved).

2. Users.

3. Computers on which the programming language can be implemented.

-' Successes and failures of the designs of the past.

lhcee different considerations show that it is very difficult today to construct a single

A:_r..:2uace that can cover all possible needs, even if we have the well defined deign

rnnc;F'es stated earlier in this chapter.

Ti-e search for a better programming language has given us a wide variety of

.... rc.: languages, and dialects of languages. A nonprocedural progranurmng

21

l....I%:

language is one that lets the programmer concentrate on "what" he she wants the

program to do, instead of "how" to do it. Related to this is the separation of the logic

component and the control component within the language. Examples are Prolog and

Smailtaik, and this thesis will cover them in more detail later. Procedural programming

languages are the more conventional languages, in which the programmer has full
responsibility for the control component. Examples are Ada and Lisp, which also will

bc covered in more detail later.

The terms procedural and nonprocedural will be discussed in more detail later.

No well defined and agreed upon definition exists, but examples from different types of

programming languages will be used to clarify the differences.

The procedural languages are often divided into two subclasses, Imperative

and Applicative languages. Imperative programming languages includes most of the

traditional languages (eg. Fortran, Cobol, Pascal), but not languages like Lisp, Prolog,

and Smalitalk. Prolog and Smalltalk are not applicative languages either. Imperative

languages depend heavily on an assignment statement and a changeable memory for

accomplishing a programming task. Most of these languages are basically a collection

of' mechanisms for routing control from one assignment to another. In an applicative

language on the other hand the central idea is function application, that is to apply a

function to its argument. A subset of Lisp can be used as an applicative language.

2. What do We Want in the Future

Historically the introduction of high level programming languages relieved the

designer programmer from the machine code by introducing higher levels of

abstractions. The future should give us high level programming environments that

provide help for the designerrprogrammer in understanding and manipulating complex

software systems. The human user should not worry about the detailed specification of

algorithms, but rather work with the description of the properties of the packages and

objects we use to build programs. The programming environment should give us a

higher level of abstraction so that we can specify behavior, i.e. what to do instead of

how to Jo it.

22

-"'-"

...

D. WHAT KIND OF HELP CAN HARDWARE OFFER

1. Hardware Cost and Performance, and Its Implications

The economics of data processing are changing rapidly. Historically, the

hardware cost of a computer system was so high that concern with hardware efficiency

was not only justified, but essential. Therefore programmers worried about the CPL

time and memory space their program code needed. Today the declining cost of

hardware makes developing and maintaining of many programs more expensive than

running them. Therefore emphasis is shifting from efficiency on the computer to
controlling software cost and user friendliness. Software cost in this context is the

total accumulated cost over the whole life cycle of the application, i.e. problem

definition, specification, design, coding and testing, implementation, maintenance, and

purging. The shift in cost also affect the design of programming languages, and at the
n-ornent we have a wide variety of experimental languages taking advantage of the

increased performance of computer hardware.

Alan Kay [Ref. 3: p. 453] in the late 1960s was convinced that in the future it

would be possible to put the power of what was then a room sized, million dollar

computer into a small machine (personal computer) placed on a person's desk. He

asked himself what kind of language would be needed for this machine, and decided

,hat a simulation and graphics oriented programming language could make the

computer power accessible to nonspecialists. Xerox Corporation started design oi

Smaltalk based on his ideas long before suitable machines were around. Xerox

developed Smalltalk as a sofware system, rather than creating a specific hardware

package. The experience gained by developing applications in one Smalltalk system was

used to generate next generation of Smalltalk, and so on. The current system.

SmalltaA-S0, was developed to be adaptable for implementation on a large number.

and vaety, of computer systems. This is one of the few cases were the language is

ready before the hardware to run it on.

Many of the facets of programming are currently caused by the way we

adjust" the user to the hardware available. The nature of programming is going to

,-cange in the future, as the computer technology matures. Current programming

chr.iques are not adequate for building and maintaining systems of the complexity

called for by the tasks we attempt to solve. In the future we need to shift our attention

away "rom the detailed specification of algorithms, towards the descriptions cf the

properzies of the modules and objects with which we build programs. Already today

23

2

.-'~.. -.-....-....- -..'.-..".....-... .----'-.'-.. .; ', ..- ? ;", -
"rlp. °./' - - " q ' !* e. + enar

the memory available is so large and so cheap (relatively) that we can see changes in

the way people program. Higher effliciency of the hardware also removes much of the

work previously spent on speeding up modules using assembly language. Today higher

levei languages can be used without much worry about efficiency problems because the

optimized compilers have become very good.

Today we are not ver" good at reusing old designs and modules (code). The

N wheel is reinvented many times over because our current programming languages and

methodologies do not enforce reuse as a resource saving method. Some of the

problems are caused by the lack of knowledge of existing modules that can be reused.

How do we build libraries etc.? Reuse of code is a complex and not well understood

problem today. There are many ways to attack the problem, and this thesis looks at

what object oriented programming languages can offer to reduce the problem of

reusability. The topic of reusabiiity will not be covered in depth, but also hardware

development makes a difference. Because of a better performance to cost ratio of

computer hardware it is today feasible to build libraries of general routines that can be

used in more applications with minor changes. General routines are normally slower

than optimized specialized routines, but because a general routine can be used more
often it is also possible to put in more resources to optimize it.

2. Visual Interfaces

The human interface has come a long way since the introduction of

computers. In the beginning even the assembly language (mnemonics) was thought of

as very "human" and "user friendly," but todav this is viewed as primitive. Todays

bitmapped high resolution screen. with a pointing device (normally a mouse), gives the

user quite a different interface to the computer .ystem. The growing capabilities and

performance of hardware are used to ease the interaction between the human being

and his her hardware, Alan Kay's dream from the 1960's is a reality today. We do

have personal computers with the power of yesterdays mainframes, and new

programming languages like Smalltalk use simulation and graphic presentation to make

the system accessible to the nonspecialist [Ref. 7]. Systems like Macintosh and Amiga

are examples of how this has become available to the consumer who has little or no

background in use of of computers.

4-"'

24

4,%

- K-ejKi .

3. Firmware

Traditionally a system could be described by its software and its hardware.
Today this is not quite true because the difference between software and hardware has
become rather fuzzy. Everything that can be done in software can be implemented in
-ardwaare and vice versa (not quite true because we need some hardware components

tc run the software on). The introduction of a user friendly interface put a much
heavier load on the computer resources, and firmware has therefore been implemented
to speed up execution. A typical example is the Macintosh. When it was presented in
19S-4 it had 12Sk in RA.M and 64k in ROM. The ROM is an example of firmware that
contains very efficient routines that control the user interface, and at the same time is

accessible to application programs.

E. SUMMARY OF THE CHAPTER

Computer programming is a complex human activity, and the programming
language is the tool used to get the hardware to do what the programmer wants done.
Programmxing can be viewed as a unique form of communication in which human
beings take an active role and machines often a passive role. The structure of a
prograrmmring language defines the boundaries of the thought of human beings. i.e. the
programming language limits our ability to solve problems.

A per-fect programming language must be ideally suited for all situations, for all
users, for all applications, and fc: all computer systems. At the present time no such
perfect programming language exists, but we have more specialized languages that keep

the complexity within the human being's limit.

4..

25

'N

- .-.-.---. ,. --- o ...-- :..-,.... .-... v '- . ,. *.:' :a*'', '

III. HUMAN LIMITATIONS AND RELATED TOPICS

A. BACKGROUND

More and more people get involved in tasks where a computer is used. It is no

longer oniv a small group of specialists that perform design and programming. Already

today a large number of people use specialized application languages, like Lotus 1-2-3,

in their daily job situation. Most people do not think of using a word processing

package as programming, but in reality it is programming at a very high level of

abstraction for a ver' specialized context. In the future people will have routine daily

interaction with computer systems. How do we build such systems? What limitations

does the human being have when it comes to the use of computer systems? Tills is the

kind of questions we now, and in the future. must answer. This chapter will try to give

an overview of some of the features that are involved. In addition some ideas from

David Lorge Parnas are discussed in order to show that not only the programring

.anguages are important for which problems we are able to solve, but also how we

. tually use the languages.

"Cognitive Science," "Cognitive Psychology," and "Human Information

Processing" all help provide the conceptual framework needed to think about the

abilities and limitations of the person designing or using the computer system. There

are three basic factors involved when a computer system is designed:

, I. Know your user: experience, limitations, ability, and motivation.

2. Know your user's task: visual and manual, what must be done.

S. Know vour user's working condition: where the job is being done, what it is like
there.

All the three factors important to the system design involve the person that is supposed

to use the production system. The user of the system seems to be the limiting factor

for many implementations of computer systems. The human being has many

disadvantages, i.e we forget, we get tired, etc. On the other hand we also have many

advantages over computer systems (at least today), i.e. we are good at recognizing

-atterns. and at setting a situation into the correct context.

26

%.

B. HUMAN LIMITATIONS

1. Variations in Performance betiveen Programmers

No commonly accepted theory of significant factors in programming or

program design seems to exists, but there have been some studies of programmer
performance. Brooks [Ref. 8: p. 737.751] found enormous variations in performance

between different programmers of comparable experience for the same programming

task. He estimated factors between 5 and 100, and suggested that differences in the
strategy used by different programmers caused these large variations.

Perhaps programming activity is too complex a human behaviour to be
studied in detail, and must therefore largely remain a mysterious process. The only

-.vav to achieve the necessary knowledge about the programming activity is to

systematically study programming behavior. Experiments have both dependent and
independent variables. Dependent variables are what you measure, and must be

selected to capture the part of the programming task you are interested in. If you use
several dependent variables to measure more aspects of the performance, the sum total
of the information (e.g. time used, numbers of errors, design strategy, rated ease of use)

wiil give a better picture of what's going on. An independent variable can be the menu
: length, from which the appropriate choice must be selected. This kind of variable can

be used to measure programmer performance. Human knowledge is by necessity
incomplete. We cannot know in advance what we might be able to know and what
nught be essentially unknowable [Ref. 9]. We must try to find things out. or as
Einstein said: "The important thing is not to stop questioning."

Programmer limitations affect how much coding is lost because the

programmer did not have full mastery of his her computer. programming language

(and ernvironment) or himself'herself, or a combination of these. In addition the
programmer may be unaware of a certain algorithm, or unable to grasp a sufficiently
large portion of the problem at one time to get the overall picture of the problem

he she wants to solve. The problem we are facing today is how to give the
4),

programmer full mastery of his her job, and at the same time give him her the powerful

tools needed to solve the large and complex problems we currently want to find a

solution to.

2. 27
%4.

.. 4

.. .. "'. -4 * 4 ,- . -- . r . -'.4 4 , €' " - ,. , ..'' . ' .

2. The Cost of Large Complex Softrare Systems

'We have long advocated economy of scale for manufacturing, but does this

apply to software systems? To produce a large integrated software system takes a long

time, and costs large amounts of resources. If we are totally dependent upon bug free

softw"are, we are at the moment in deep trouble. The testing dilemma was stated by

Dijkstra [Ref. 10: p. 61 as: "program testing can be used to show the presence of bugs,

but never to show their absence." Today program testing is possibly the only way to

ensure an acceptable quality of a complex program, Although a large integrated

software system is more economical when it is in active use, it naturally costs more if

we must take it out of use due to an error. Because it is larger, there are also more

things that can go wrong, so things will go wrong more often. Finally because of its

size it is more difficult to find out what is wrong, and it will therefore take a longer

time before it is running again. Human limitations, when it comes to complexity of

systems, seem to reduce the advantage of large integrated systems. Especially if the

modules depend upon each other, and therefore if there is an error in one. none can be

used. Some advocate that systems like the "Strategic Defence Initiative" (SDI) are

outside our capabilities when it comes to software design because of its size and

complexity. David Lorge Parnas strongly opposes the SDI due to human limitations;

he said: "the state of the art in software is significantly behind that in other areas of

engineering.- [Ref. I I: p. 13271 The lack of testability of SDI softwvare makes life

difficult: he stated: "we would need a software system so well-developed that we could

have extremely high confidence that the system would work correctly when called

upon." [Ref. 11: p. 13281

The bottom line is that not only do large integrated systems today cost an

enormous amount, but we also have the "cost" related to trust in the system, i.e. do we

- trust our systems enough to let them control our life? The cost related to trust is more

related to politics than money, therefore it is less measurable and much more

complicated to agree upon.

3. User Interface Performance Issues

Vision is our primary sense, but it has its limitations. There are many things

the eve does not see, so the screen on the terminal computer can take advantage of

this. The human visual system has several characteristics that control the use of

computer systems for visual representation of data and information. The human

.4

.?.'A•

04?

!41 F,

4.

perceives as simultaneous changes that occur in less than 20 ms. And if successive

frames on a screen of a moving image are redrawn in less than 50 ms, the human

perceives the object as moving smoothly. And finally if feedback to user initiated

events are produced in less than 300 ms. the human perceives it as occuringIinstantaneously. These indicated speeds represent limits for which objects move

smoothly and do not interrupt the user's train of thought. The bottom line is that the

humar, is ver.' slow compared to computers, so the drain on computer resources to give

a good visual presentation is little compared to the advantages it can give. [Ref. 12: p.
I"61

Colors used on the screen also do have an impact on how we react [Ref. 13: p.

3-33]. Because vision is our primary sense the designers of interactive programming
environments must take this into account. Use of colors in the interface often means

that the resolution is poorer than with a monocrome screen, i.e. there is no such thing

as a "free lunch.'"

C. COGNITIVE SCIENCE

1. Human Nlemory

Andrew Monk [Ref 13: p. 49] states: "Human memory is currently believed to

be a complex system of independent storage systems." These storage systems have

diTerent characteristics. Long term memory seems to use a semantic code and stores

information in a highly organized manner. No capacity limit seems to exist for this

storage. Retrieving information seems to be a process of reconstruction, instead of just

outout of held information. That means that the output may be different from what

"was put in. The short term memory is easier to measure, test and is therefore better

understood. It consists of "buffers" that holds the information for a very short period

of tirm while it is processed by the brain and stored in long term memo'. The long

term memory seems to be limited to only being able to code information that 's

meaningful to the user. Therefore language designers and program designers must

ensure that the user has a mental model of the system used. The system environment

should work the way human beings think. Current programming languages often are

designed to ease the parsing problem instead, i.e. the use of prefix constructs instead of"

Ir nfix constructs.

29

% A-,

2. The Learning Process

Learning is a complex process of integrating new knowledge into a structure

of what is already known. Writing a program is a process of learning, both for the

programmer and the person who is going to use the software product. This learning

takes place in a context of a particular hardware system, particular programmng

latguage or programrning environment, and depends also on the society around us.V.

M\uch of the information the maintenance programmer has, is in the source code of the

program. This is a typical example of the dual role of a programming language. i.e.

hiuman to human, and human to computer system, communication.

p. Reading and understanding a computer program listing is a cognitive task that

is critical to the development and maintenance of software. In the interaction with the

computer system the user often receives and sends information in the medium of

wrtten language. This information, the words and sentences used, must be related to

each other for the reader to be able to understand the information as a whole. The

reader is performi ng a problem solving exercise [Ref. 13: p. 371. How the human

understands this piece of written information depends upon the characteristics of the

- text. but also it depends on the prograrnmers past experiments and familaritv with the

..oncepts involved. Especially in the maintenance phase, because normally this person

s not the person who wrote the program in the first place. it is necessary to understand

how the program works in order to update or enhance it.

The construction of a program can be viewed as building a mapping from

some domain external to the program into the set of objects and operations avaiiabie

in a particular programming language or system. The task of understanding the

program becomes one of constructing information about the modeling domains used to

bridge between the problem and the executing program. Within each domain there is

V,, :nformation about the basic sets of objects. including their properties and relationships.

the set of operations that can be performed on the objects, and the order in which

these operations take place [Ref. 141. Figure 3.1 gives a visual representation of a

"banking" problem domain.

Natural languages may be the only language that can serve across multiple

domains. The problem is that natural languages are incom.ise and overload many

Swords and expressions. Perhaps we ultimately have to change our ways of thinking a

little bit in order to fit our computers, because current technology does not ai'o'k

natural language as the comrnunication between the human and the machine.V
30

I0

PROBLEM
DOM1AIN

ALORTH

8. AN IG OMI

PRGRMMN

Z'I..RST RS

Fiur 31 odlig DOins inrogammng

3.Tini gur nd Reasoniominng rorni-dg

3.Tikigan esnn

Neil Thomson (Ref. 13: p. 5] describes the human being: "Of all the human

facilities, our ability to reason is the one which appears to set us apart from the

animals. Thinking seems to be a combination of inductive and deducti~e reasoning.1,

but at the same time the two are difficult to separate. Thle process of arri\ ig at a

logically neessary conclusion from initial premnises is deductive reasoning, and it is a

logical process. Inductive reason ing on the other hand is not a logical process, but

refers to the rroduculon of a general statement from specitic instances. The problem is,

how can onc build computer s~ stcms with a reasoning process aS flexible as humian

reaonig.So far we have not been able to do this, but we have a large numb.er of

expert systems that are used as working tools in specialited domnains. Tvpicailv the

expurt systemn asks questions and the user supplies the expert s, stcin %ith the facts

needed. One problem with expert systems is to specify' and quanrAf. the kncwledge of

an ex:pert in a specialized field-, another problem is how to write the programn that uses

thts knoxi;ed,_e in an intelligent way

D. WHAT IS "MODERN PROGRAMMING PRACTICE"?

1. Background

The "software crisis" has not been solved yet. New languages have moved the
cormpiexity barrier further and further, but not really solved the problem "how to
,develop large and complex programs.- David Parnas [Ref. 10] says we must learn to
use the progranimng anguages we have. The problem is not so much the coding itself,
as the analysis and design of the programs in order to make the coding a straiCh.-

wcrward process. In other words we must understand the problem and our
-,.. progranurung language in order to be able to solve new, large, and complex problems.

2. Modern Programming Practice

Modern programming practice is helpful in solving complex problems. This is
a progranuning technique where more work is put into the analysis and design phase in
order to save later on in coding, maintenance, and enhancements. David Parnas is a

Nstrong supporter of this methodology, which emphasizes the following:
1. Structured programming.
2. Inlormation hiding.

-. Data abstraction.

Top down design.
The basic, principle of structured progranumng is like the military strategy of divide and
conquer. A program, or software module, is broken into small, independent. single

'unction modules which are clear and easy to follow logically. These modules are
4- themselves composed of even smaller blocks: the decision, sequence, and repetiton

structures found in most programs. The details of structured programming will not be
Lay ered in depth because they are of little relevance to this thesis, but the other
elements of the methodology will be covered in more or less detail in the context of the
progranumng 'anguages and programming environments discussed.

3. Why use Modern Programming Practice?

.Many of the problems we are working on today are large and complex. .\

l-irge number of people and resources are involved, therefore we have a need "or

manaement of the project. The management is responsible for: allocation of
esIoL, rces. deadlines, go or no go decisions, funding etc. To be able to t:,k, ne
:'eions. and make comparisons between different projects, it needs measura'le, In

S:\:, con:e ,t ncisurables are anything that can be measured. \lcasurabc\ .re

32

*!1

:4

quantified data that is used for comparisons, evaluation, etc. In a rroducton

environment the management is normally the one who specifies the policy, standards

and interactive integrated progranmng environment to use. Many of the tools in :he

environment will therefore be used for managing the whole lifecycle. and not cnx for

e design code phase. There may be a conflict of interest between management and

othier users of the system because of' the measurables. Often technical people do not

want to :ve measurables because they are afraid of later being confronted with them.

It is better to be clear than right, because if you are clear someone might tell

you that "ou are wrong. The system must be managable, i.e. measureable for the

management. In addition, maintenance of software is expensive and time consuming.

The best way to rmnimize the maintenance cost is to design the program with ease of

maintenance in mind. One way to do this is to use modern programming practice, and

one key is information hiding. If this is done, most changes will be limited to the logic

contained in a single module. and the possible number of interactions between the

mcdules decreases enormously. Therefore the ripple effect will be minimrruzed, as

changes made to an independent module should have little or no impact on the logic

perormed by other modules. Modern programming practice often results in evels of

anstracions. levels of protection. i.e. programs that have a layered structure.

E. WHAT DOES "FRIENDLY" .MEAN?

I. User Friendly Interfaces

The environment in which programmers work is a rich and complex
environment. full of human involvement and Interaction, change, and m,.-sleau:ngc

appearances. In this context friendliness would be the distance between the things the

* user -:hinks about doing, and the things the user actually, can do in the programming

envIronment. The three interfaces, see Figure 2.1, can give a measurement of hcw

:e..... the system is to a user.

People are different, and react differently to a given stimulus. Th. nears tnat
what s friendly to one person may not be equally friendly to another person. GenerLh:

-I .:,ua' representation, along ',%.th reduced interdependencies among different parts C:,

X:e system., maes a programming environment more friendly.

.4

User Friendly

.5 InputIl

Output

"'

Figure 3.2 User Friendly.

User friendliness depends on how easily the human can process input from a

computer system, and how easy the human can output something to the computer

sys,em and have it understood. See Figure 3.2 for a visual representation of user

ftriendliness. Note that we are talking about the input to the human being and not (as
it normally is represented) to the computer system. This is done to emphazise the shiflt

- in dcswign that are taking place in some of the more modern implementations of user

interfaces, which put the user in control throughout the session. Ihe interaction with

the s'stem is on the user's prermses. The trend is to concentrate more and more on

user frie.dly interfaces between the user and the computer system. On many systems

this shows up as windows, menus, and use of a mouse. The objective is tc make the

process of cormunication between the user and his her computer s stem more

:',:t:%e, i.e. more natural to the user.

2. Interactive Systems
..\ w:de wariety of hardware can be used in an interactive environment in order

to hclp communicate information from the user to the computer system: ke', ,cArd.

mouse, pointing device, speech etc. At the same time there are many \Xas the

,".,-,-,parcr system can commuMate ,nformations to the user. This communi ,aron of

SA

"..................................

". ~ ~ ~ ~ ~ --.-.- ... ,,-.,,',

I . . . • .. - - -. .- .•."'. .-.- . -.. - -. .. '".-, .. "

information must be made such that it is easy for the user to find the information

required. as well as to make it easy to understand once found. An interactive

integrated programming environment should offer the user many different structural

views of the program. Examples are: when editing the program-mer may want to view a

program as a parse tree, when reading as a document (text), when debugging as a

control flow graph. and when looking at the screen as a visual image. Computer
resources should be used to make this interaction as intuitive as possible to the user,

i.e. zhe user should not have to fight the system.

3. How do We Learn to use an Interactive System

Today interactive integrated programming environments, mostly based on

Lisp, seem to be characterized by tools that interact with each other frequently. The

progranmer may easily switch between an editor, interpreter, debugger, and compiler.

Each o" these tools must know, to some degree, about other tools. The user interface

must be as natural as possible for the human programmer. To achieve this the

environment must take advantage of all the human's strong sides: ability to recognize

patterns, visual sense, auditory sense, etc.

We have a great deal of knowledge about the human visual and auditory

senses. In addition we have more or less accepted theories about how we think etc.
But at the moment we do not know how to put all this knowledge together in order to

prcduce the optimum interactive integrated computer system. The human being is

ncarac~erized by the ability to change context without loss of information. We are

:ten working on cne problem. but suddenly we get an idea or maybe the though: just

wanICrs olf, and we find ourselves in another context. If the system we are working

'.v.' could support also this human activity it would be easier to learn and operate.

TI:: means that the system has to be modeless to the user. A consistent user interface

c"n heln the user overcome some of the problems he. she meets when being exposed to
-cv ne :nteractive system, or a new application within an already known interactive

I:em.. The system should let the user be in complete control ,hroughout the session.

Jer the user the structural view he she wants to use.

4."

'pi°

.-. ..S. , . - . ,.: ' .. .* , . ," '

• ,S . ,. . . .,,, , ., . . _ . . -."1' ' ' . . .

F. SUMMARY OF CHAPTER

Today more and more people are exposed to computers in their daily life.

Therfore more computer resources must be spent on the interface between the user and

the computer system in order to reduce the learning problem for the average user.

Our abiiitv to solve large and complex problems is not only limited by our

progranming languages, but also by the way we think about the problem. Modern

programming practice, which emphasizes: structured programming, information hiding,

data abstraction and top down design, can help us use what we currently have to solve

problems we earlier could not handle.

, Currently we do not know how to put all available information together in order

to produce the optimum interactive integrated computer system. The user interface

must be as natural as possible for the human user.

la-.

_11

-'p%

:~..9.... .., ...,
. "-'Yt ..-. '''"Q -*." "', " " " .:""" " , :,: ' :-" :; ," ":" '

IV. DIFFERENCES BETWEEN LANGUAGES

A. PROCEDURAL VERSUS NONPROCEDURAL

The terminology and names used in computer science are not always clearly

defined and nonambigous; this is true for procedural and nonprocedural programming

languages also. In this thesis the nonprocedural languages are the ones that emphazise

the features that let the programmer concentrate on "what" he she wants the program

to do. instead of spending time and effort to tell it "how" to do it [Ref. 3: p. 499]. The

separation of the logic components and the control components within the language is

also important to nonprocedural languages [Ref. 15: p. 424-436). The terms procedural

and nonprocedural are relative terms, and many computer scientists would say "more

procedural" and "less procedural" instead.
In logic programming languages like Prolog, the goal directed use of Horn

clauses lets the programmer express the facts, and removes the "how" part of the

*4. problem. Prolog does have control features built in that the programmer can use. such

as the "cut" predicate. Prolog will be covered in more detail later.

-' Object oriented programming languages are in this thesis classified as

nonprocedural programming languages. This claim will be defended later in the thesis.

The discussion is more on programming style than the programming languages

themselves because it is possible to program in a procedural style in a nonprocedural

progranming language (i.e. Smalltalk). In a conventional procedural language the

programs are active and the data elements are passive. The program elements act on

,he data elements. In an object oriented programming language, like Smalitalk. the

data elements are active and respond to messages that make them act on themselxes.

Maybe they modify themselves, or maybe modify or return other objects. Object

oriented languages will be covered in more detail later.

The control structure of procedural languages determines the order in which

actions take place within the program. The statements within the program must be

executed in the specified order to ensure correctness. This implies a very close

relationship between the control structures and the actual logic of the program.

37

',.................'"...".. - '"...." ...

Theoretically all programming languages are equally powerful because they all build on

machine code, and they all can represent a Turing machine. For human beings this

seems not to be true, but this is only because the programming languages do not

equally well support the way people think, and often different languages are

inappropriately called "less powerful" than some other language.

B. PROCEDURAL LANGUAGES

1. Historical Background

Traditional programming languages do not really offer the programmer a high

level of abstraction, but rely on a "word at a time" programming style [Ref. 4: p. 404].
The von Neumann architecture of the computer system, and the sequential nature of

the traditional programming languages place limitations upon the level of abstraction

the language designer can make available to the programmer. Programming has

proved to be much easier if a specialized language, for building similar applications, is

available to the programmer. The language supplies appropriate abstractions for the

application domain, and a programmer can simply select and compose these high level

constructs to build an application. The primitive constructs in the language are then

application level constructs. These specialized languages can be successful in a

specialized problem domain, but are generally less useful for other applications, and

therefore these application modules are difficult to reuse. For a programming language

to take advantage of both specialization and generality, it is possible to build the

specialized language upon a more general base language, which must be extensible.

Special languages like the symbolic language APL can be very compact, with
very high semantic power. If the same program were produced with Pascal, a much

larger program (in number of codelines) would be the result. All languages have the
same theoretical power, and therefore the same problem can be solved in all the

programming languages. APL is less procedural than Pascal, less has to be said about

. k,"ow' and this makes APL more compact.

The evolution of these languages, and especially the effort to provide more

semantic power, has resulted in the development of Ada. This very large and complex

.an'guage provides increased semantic power (higher abstraction) at the cost of

simplicIty, clarity of understanding, and maybe the programmer's master" of his her

I

3S

Z61 A AX

tools [Ref. 161. Lisp is a language with a long history, and is very popular in research

and development communities because everything is treated as lists. Therefore it is

K'. easy to modify and extend to suit special requirements. The programmer is also in this

case responsible for the control structure of the program.

2. How do we Cope with the Complexity of Programming?

The complexity of progranning increases dramatically with the size of the

program, because the possible number of interactions between the modules that make

up the program increases so enormously. How can we deal with this problem? What

has worked best in dealing with unmastered complexity in the past is a combination of

the following [ReC: 17: p. 8]:

1. Learning f'rom analogous situations outside the present situation.

2. Learning how people think and combine that thinking with facts and
preconceptions to determine actions.

Traditionally courses in computer programming teach you to think like a computer

when designing a program. This view of programming does not support information

hiding. which is one of the critical ideas in "modern programming practice." In

procedural languages the programmer is responsible for the control structure of the

program. and this rnght be the reason for "think like a computer" programming. Ada

is an example of a language that is designed to incorporate the new programming

ideas, but still allows the programmer think like a computer if heshe wants to.

Our ability to grasp a complex problem is controlled by short and long term

memory. Short, term memory is a workspace of limited capacity that holds and

processes those items of information occupying ones attention. The capacity of short-

*crm memory is according to Miller [Ref. 181 seven plus or minus two chunks. A chunk

is a single symbol or a group that has a single meaning, i.e. telephone number, piece of

code etc. As programmers mature they observe more algorithmic patterns and build

larger chunks. The scope of the concepts that the programmers have been able to build

into chunks provides one indication of their programming ability, and it is rather easy

,o measure.

3. ADA an Example of an Imperative Language

Imperative languages depend heavily on an assignment statement and a

changeabte memory for accomplishing a programming task [Ref. 3: p. 34-41. Most of

these lanuages are basically a collection of mechanisms for routing control from one

assignment statement to another assignment statement.

% %, %

,'S

6

I e United States Department of Defence (DoD) initiated the development of

Ada for the purpose of large computer programs to be used in embedded computer

systems. Ada is a rich and complicated language, but no subset is allowed by DoD.

Since Ada is designed as an integrated, unified language it is difficult to remove

features without disturbing the unity of the remainder of the language. The language

supports 'modern programming practice," and is a block structured language suitable

.or general purpose programming. Even if Ada has taken many ideas from Pascal. it is

not Pascal. and the design style of programs will be very different. Pascal is a language

tor single, independent programs, while Ada is a language for designing and creating

.arge software systems. It is designed to heip create programs by piecing together

standard program units from an Ada librar,. Information hiding is supported by

modularization (package), and this helps simplify readability, maintenance, and

enhancements. Abstraction both for data and control is achieved with the features in

Ada.

The dependencies among program units are explicit in Ada source code. The

structure of an Ada system is not dispersed among the source code, a run time

executive, and auxiliary system generation tools. The structure is completely defined by

the source code. The Ada compiler ensures that units are compiled in a correct order.

and that an executable system is configured only from units that are up to date.

Some have expressed concern about Ada, that it may be too large for the

average nrogrammer to learn completely. and that the programmer therefore will lose

master- of his her working tool. Hoare in his 1980 Turing Award Lecture was critical

of the size and complexty of Ada. He meant that the language contained too many

features that made it complicated to use effectively. Much of the complexity comes

from the wide variety of features to handle the same problem. It is not like Lisp where

everything is a list, even the program itself, or like Smalltalk where everything is an

object. The complexity of the features in Ada may make it more complicated to build

user friendly interactive integrated programming environments.

4. Pure LISP an Example of an Applicative Language

In an applicative language the central idea is function application, that is.

applying a function to its argument [Ref. 3: p. 345]. Within an applicative

programming language, functions may be defined explicitly, conditionally, recursively.

.Z"., or as the composition of other functions. The main point is that these functions

_" . -

-- :
.4

operate only on data (numbers, characters etc.). Functions that take other functions as

arguments provide a higher level of abstraction.

Lisp is one of the oldest languages around, second only to Fortran. It was

developed in the late 1950s out of a need for artificial intelligence prograrmming. In this

kind of application the interrelationship of data and information must be represented.

The resuit is that the pointer, and in particular linked list structures are natural data

s:ructur:in methods [Ref. 3: p. 341]. Standard Lisp is not a pure applicative language

since it. among other things, has an assignment operation: "setq.- To get a pure

applicative language, a subset of Lisp can be used, namely. Lisp without -setu."

rplaca," and 'rplacd," but also wvith "eq" restricted to atoms.

An applicative subset of Lisp encourages higher levels of abstractions than

conventional Lisp, because the assignments are hidden from the user. The assignments

may well exist on a lower level, but they are hidden from the higher levels of

abstractions. An applicative programming language makes it easier to integrate

different tools into a system because the problem of side effects is avoided.

M*acLennan [Ref. 19]. among others, have suggested combination of features from

value oriented tapplicative programming and object oriented programming in order to

build interactive integrated programrrdng environments.

Lisp Is a symbol manipulation language, where the fundamental objects are

cal'ed atoms. Groups of atoms form lists. An atom is a sequence of alphanumeric

characters: a list is a sequence of atoms and other lists, enclosed in parentheses. Lists

themselves can be grouped together to form higher levels lists. The ability to form

ruerarchical groups (e.g. lists of lists) is of fundamental importance to the language

[Ref. 20: p. 21. Atoms and lists collectively are called symbolic expressions. Symbol

manipulation is often called list processing.

Lisp represents both the data and programs by the use of lists. This uniform

way to represent everything in a program makes Lisp ideally suited for interactive

integrated programming environments, because everything can be treated as lists. A

, %syvrnbolic manipulation program uses symbolic expressions to remember and work -,ith

data and procedures.

Lisp and Smalltalk both perform dynamic type checking as opposed to the

stat:c type checking in Pascal and Ada. Both Lisp and Smalltalk will be discussed

mere i, detail later. especially how they are used in interactive integrated progranmunn:ng

enir:onnients. We will see that dynarric binding today makes it easier to build and

maintain MteracIve integrated programin-dg environments.

41

'F

. ..t.. .-. t -*_ ,,, . ," ,, ,b ,,k

The sample program Tower-Of-Hanoi in Appendix C is written in Lisp

[Ref. 20: p. 88-90].

C. NONPROCEDURAL LANGUAGES

1. Historical Background

A pure nonprocedural programming language would be one in which the

progranner only had to state what was to be accomplished, and leave it to the

computer system to determine how it was to be accomplished. Normally this kind of

prograrmming is achieved using a higher level of abstraction that removes the user from

the trivial part of specifying control flow etc. Prolog, which stands for 'prograrnmmng

in logic," was developed in France [Ref. 3: p. 5001 in 1972. Since then a number of

interpreters and compilers have been developed for a number of different computer

systems. Prolog is becoming more and more popular for logic programming, and some

even think it will replace Lisp for artificial intelligence programming in the long run. It

was chosen as the language the Japanese will use on their 5'th generation
supercomputers. Although there are many logic programming languages, this thesis

will investigate Prolog since it is a typical, and well known, representative of logic

programming languages.

Object oriented languages like Smalltalk are another typical but less known.

example of nonprocedural languages. Many computer scientists believe that obect

criented programming is the only possible way to go if we want a reliable

implementation of a ver' large and complicated software system (like SDI). This is

mainly because we, at the moment, are not able to perform a convincing test of

conventional written programs. Exhaustive testing is not possible due to the enormous

number of possible interactions between modules. The only way today to prove

correctness, i.e. the absence of bugs in the program, is by exhaustive testing. In object

oriented programming the testing problem is reduced to testing the objects. Everything

:s treated as objects, it is therefore easy to add to or change a program. The class

sructure of an object oriented language, like Smalltalk, prevents objects from making

too many assumptions about the internal behavior of other objects.

42

q%

Mr ""i--

2. Prolog an Example of Logic Oriented Language

Prolog builds on first order predicate logic [Ref. 21: p. 14]. Computer

languages try to do things. but logic just says that certain things are true or false.

Prolcg looks like logic. That is, its syntax is that of logic, but :he semantcs are

d fferent. In logic programming. programs are expressed in the !orm of propositions

th-at assert the existence of the desired result. The theorem proer then must construct

-he desired result in order to prove its existence. Thus a side effect of the proof

produces the wanted result.

Prograrming in Prolog is different in style from most progranmiung in other

languages, and it is called declarative programming. The main idea is to w.vrize programs

as lots of small modular pieces. The programmer's emphasis is on writing correct

pieces, and not on figuring out how the pieces will go together. The emphasis is on

whether each piece makes sense by itself and whether it is logically correct, not on

what it does. Prolog makes the "closed world assumption" or "lack of knowledge"

.:nference [Ref. 21: p. 71). That is. if you cannot prove something is true, assume it is

Prolog is not a pure nonprocedural language because it has built in some

special features. The "cut" predicate for example cannot be interpreted declaratively.

and has no argument. It always succeeds when you first encounter it. As a side efiect it

throws awav backtracking information to prevent normal Prolog backtrackino A cut

' predicate at the end of a rule means you want to solve the problem only once.

As opposed to Prolog. pure logic programming allows separation of lovic and

control. Because the clauses of a logic program have no effect upon the correctness of

the program, the meaning of the program is tied to the logical relationship of the

program clauses, not to the order in which they are executed [Ref. 31. The prograrn"ner

can therefore focus on the details of the iogic component when he she is concerned

with program correctness. After a correct program has been established, the

programmer can concentrate on the control component for efficiency considerations.

AppendLx B shows a small sample program written in Prolog where also the cut

predicate is used.

A frequent danger in Prolog programming is infinite loops, Typically a rule
calls i-self forever, or a set of rules call one another in a cycle. This happens more

often in Prolog than in other languages because of the emphasis on recursion and

complicated backtracking [Ref. 21: p. 431. Artificial intelligence programs tend to be

43

.N.
. . . .+ . . .+ % " % " - -

- -• • m "-
+
+" .e eo+ .-j", ,

large. complicated, and very hard to debug. A problem suitable for artificial intelEigence

techniques must be sufflcien, l' well defined to have clear crnteria for success and

!iillure. Otherwise it is impossible to tell if it is working or not. Prolog generaliv has

problems when processing tmre, storage space and calculation accuracy are critical. In
adt.on most people find it difricult to read and understand large Prolog applications.

N Pure logi,: programmng has some disadvantages that resuit f.rom the absence

of state changes. Therefore it is difficult to write programs for those applications "or
which ternporal change is an essential element. Examples are: databases, graphncs, real
time programs, interactive systems and operating systems. Many of the components in

an interactive programnuing environments are of the above type: editors, debuggers,
version control, management sstems etc. But Prolog, as opposed to pure logic

progranmung, has assert" and "retract" to take care of state changes, but this is not

enough to make Prolog well suited for implementing interactive integrated

programimng environments.

S. Object Oriented Languages

What is meant by "object oriented" is still rather vague, and a lot of confusion
seems to exist even today among computer scientists. Some call Lisp an object

oriented language. others claim that Ada is object oriented [Ref. 22: p. 11-191. There is

a trend to give existing programming languages an extension that includes object

oriented features but the question is if this makes them real object oriented languages.
n\n object oriented programming language is one in which the fundamental processing

" arad:am is simulation. In such a language one often sends a message to an object,

rather than the more traditional approach of calling an active procedure to operate on

some passive data that is passed to it. Object oriented programming qualitatively
enhances the design, creation and maintainability of software systems. Much of this

power derives from modularity, and the fact that absolutely everything can be handled

as objects. The message is not a distinguishing factor in object oriented progranmng

.anguages, but is often incorrectly used to describe them.

- The object oriented process is closer to high level application programming.

.< and further from the machine level, than the traditional approach. The object oriented
approach allow design and coding to be done at the same time. There may be an

object in the library that nearly fits the requirements, and you can start the coding wi:

this object. Instead of creating new modules out of smaller subparts, you create new

.cbiects by mcdifing existing objects. This means that instead of piecing together, you

.-. 22. ' 44

.r

04

carve and shape an existing object. This kind of design code technique ,een. fcr -. ,

to be more natural and 'ntuiive than the more traditional design code process.

Obiect oriented nrogramnung languages aq they are defined in :h's tinesis are

nonrccedural because the progranmmers do less of the how than in more trad:t.onal

rra~r;.mr, languages. The classification is based on the style of procgramming

USC e o ct oe td progranurung languages can be nm'ssused . i.e. used in A

nroceuiural i anner.

N'odulant,. is at the moment probabLy the best technique available !'r

manacz;:ng the complexity found :n software svstems. This means that Lertain tes c

con;ievxtv are str:ct!v contained withir boundaries called moduie :nterf'acs. \,nv

progran'.g language environments include features that support moduarit, but

onlv above the level of the procedure call. The obiect oriented approach incCrorates

n'.odularitv at the most basic jevel of a software system.

A restaurant can be used as an example to demonstrate the difference 'netwveen

the object oriented and the traditional approach. In an object oriented restaurant. vou

order your food by sending the chef a message (via the waiter). The chef is assumed to

have the prerequisite knowledge to take the order from there and prepare the food. but

%--, xou may also give the chef a specific recipe if you want to. In a proccdure oriented

. restaurant, you must send the recipe to the chef. This means that you must know

something about cooking in order to get a meal, and may even need to know

omething about the chef" The procedure specification in the procedure ca'!

estabihment puts constraints on the chef. Suppose, unknown to the patron, the chef

had learned a better way to prepare the meal. Only in the object oriented restaurant

Louid the new skills of the chef really be exploited to the benefit of ever-one.

What are the rninirmum requirements to be an object oriented language? What

:ea-ures must be supported? This thesis will tr to show that the language must

suprort the following four features to be a real object oriented progranurang language:

1. Information hiding.

2. Data abstraction.

.. Dynarruc binding.

4. Inheritance hierarchy.

Especlailv the last feature, inheritance hierarchy, reduces the number of languages that

can :c called object oriented. This eature also suggest that this thesis support the

""smnult:on paradigm, more than just message passing, as the most irnportant

.4 5

04 " .,..

descrip::on of object oriented languages. This definition of object cr:en!ed

progr: ram;-ing languages excludes, among others, the following languages: .A-da suppcrts

packages iuntyped data abstraction) but not inheritance, CLU supports c!usters w:oed

data abstracion) but not inheritance, standard Lisp does not support irformat:cn

hading, and ISO Pascal does not support information hiding.

There are other concepts in object oriented programrrmng that are not central

"D the basic idea of object oriented programmng. One is automatic storage

management, which is not necessary, but is very useful when implemented. Autonat:c

storage management techniques such as garbage collection and reference counting let

programmers ignore details concerning the release of an objects storage in memor-.

Tvpicallv garbage collection in a real time system is solved by one of the following

methods:

1. Sweep garbage collection.

2. Separate memory management processor.

S. Parallel.
a. Spi)t virtual memor' in two; cost is only one bit in address.

Thee techniques make the application source code cleaner, and the overall software

ssxs:em more reliable. Another concept is the virtual memory system needed to take

advantage of all the classes (objects) created. Standard Smalltalk does not have a

virtua memory capability, but this problem does not exist in most of the newer

:mre-nenta ions of object oriented languages. The standard Smailtalk-SO s object

=:rrat alow a simple resident implementation, but at the same time facliitate easy

,x:ensiocns to virtual memory. In the future it may be feasible to swap objects instead

c pages in such a system. LOOM [Ref. 23: p. 251-.201 is an example of an

epenmental single user virtual memory system that swaps objects and operates

Swx:thcut assistance from the programmer.

D. SUMMARY OF THE CHAPTER

The prograruung languages can in general be classified as procedural or

nonprocedural. In prccedural prograrrrung languages the programmer is responsible

for the control structure of the program, while in nonprocedural progranmrng

-anguages the programmer concentrate on what he she wants the program "o "o

6 ' .

...................-..

instead of how to do it. Ada and Lisp are examples of procedural prorarr-imr-
,anguages. while Prolog and Smalltalk are examples of nonprocedura: projramna
languages. Theoretically all progranurang languages are equally powerful. and Can
represent the Turing machine.

,P

9..

04

9..:

.11

, ".,.

O4

,a'.

V. WHAT IS AN OBJECT ORIENTED LANGULAGE?

A. HOW~TO DESCRIBE AN OBJECT ORIENTED LANGU AGE.

General Description
%lost people '%iew processing in an object oriented s%-,em. .1ke Snaltak. 'Is

':n~I~on eis l4; The prograrrming language objects Lorrespcnd to real xard"

e:.and :he mnaniiulat~on f these objects are simulated by send~ni mnessl-,es ,o *:::e

pr:~ramr~n~language obnjects. Simiulation is particular1-, ap propriate to s~sesthat

._' deal eV11cLtl% with tlie passage at time an"' the atrtosa bet hruh

.=.x. FVanples of these s~sterns are: interactive s~sterns, graphics sxstemns. opera:;rng

stmed!:ors, fille sxs-ems, version control systemns and database s~ stems. Smtrn'ltalk

and S~mula are bsu.lt ;pon the framework of a conventional procedural la:o'ce.an

1-.s Iraimexork d'oes not take fu.*l ad~antage of the simulation paraj:ern. Sone Peorme

i el h messaize sending is, the key, to descrb object oriented languages IRe! . t

_1is thesis shows that this is no, enough because the four features d~escribed i.- ;.he l~

"nap,,er are :. guaranteed b% mnessagze sendine alone.

%Lin% people who ha-,e no b ackgzround in how comnputers w ark tFind :;x :;ea
DI ~e crened ~ tem q~ter~turl.This is prohahx caused 1-% "h C"L

c:orresp-ondlencc hretween thinking about computer objects and the real world je:

Ofte .n -.he -.hlect ari ented programn is derivable from the real wxorld ;Itudtlon :':s

int1endled to model. In Smalltalk thex concentrated on the visual imp~act a!ol'apc

..:ie resolut ~on graphics. on highly iteractive user interf"aces, and on increase.' satrrt

or heuser in the design and programmiung role. The enhancement to ~ie %isua.

.. craecovers the basic concepts of Windows, menus, and Scral." ars. In ad.:~n x

trtinbetween the user and the systemn emphasized the use of' a pe... c%:-c

moose, rather than kei board for selecting objects, and operatzions an ohc h

0 a: ioa about how to create a software system in an oblec, orented :asn :on cones

more r~lvto those without a preconception about the nature of" soltware ~ e~

* R>.2": p.

%i

I%

.' P -

06. 0Ob~ect ovnented prograrnrmnng Is a technique well sutted for organizing ver.
.arge ca-n nic programis. It makes t[practical withcurnavibl ehccv

A-- w:: rcbilems --1-at %terws ould be impossibly complex. An object oriented

t~r:cra covst o~a set o." obnjects and a set of' operations on these objects. The

% 01o :he Cperat:ons are distrilbuted am-ongz the various obiects that tbhv can

~oC !n:e te ~ tm:s not i-onolit:c. At the same time, the defini:.ons of" the

are ~bued nton2 the various f'acets of' their behavior [Ref 2-: p. 11.ih

dat'a vau eCs :ns:dle an oboect can represent the properties and relatuons in xhic:h that

e~. no ncpats. nd he ehaicrof the programmoing language object! :an modfel

tueZ Iea~r fte -'r-spcndling real %vorld object. 'The main parad: n. of ob-Ject

C.- Le PrJ2,raMni SLI~PPO.rted in th-:s thesis Is simulation, which is lu,*,e natural

Oo wtt Man of the deas inl oiect oriented 1agaeretknlo

* .'u~ ~iwatoniReF. 1: p. -4041. The creators of Smailtalk at Xerox see

the >i.uaecaractrinzed b%- the following three prirct.pal attributes [Ref. 21: p. 1()!:

I Data strU as ob.jects wihare automatically dleallocated.

2 i~c\'~n efleLtd by* senrIng messaces to objects.

C 1 v~r oi 1'eCt- s d-escrihed in Iases.

Anoetcr:enteuc a.:a; is orp-anuzecl around objects. These objects are piaLcS for

-tre.!&ke Paslca1 rcord's. I!, addition :he% have methods, w-.hich are rout:nes
tu~to~eate n te oects aa.I obect oriented prograrrmna y3u declde on -\Our

to ~ ture rst.and ten aterwxard's UCodeIUe wAhat routines you need to ert

.. I A~rL~ You, an do tns:n ail langzuagzes, b ut in ob-ect orente-d

C 7L n 71',Up the data structures and the routines together into obhjects.

A: 1,t~ ke a lhttle program, that does its task in an Independent manner. ELch

t-rcr:im knos how. to do its task, like the chef in the example described earlier

2C *0\ to rC:rer're the meal xou. are ordering.

2Differences betw~een Object and Procedure Oriented Programming

Fhe restaurant chef eNxanple mecntioned earlier gi'es a ood, feel 1-0r the

J,~ernce.but th- G-1:0%irio e\amlrcs k,:: demonstrate more of 'he oL~nitoo
.:.urone btwen te to tnes oprograin-mn-in e are dcusnpr Cceure oriented

'b, e: ec t oriented. MostL xs t:n-, pr cg r a is ar e procedure or entd eUt.

-rt~cedu angyuaies like Lot-us 1-2-7, 1oo~ 1)1311 etc. are now eorx~ moe

n.O mre :IMPOrtant In o'ur noml-,\ta~n. In of thce newk -,:u'dc

* . ':~~~ec:::c ..prcIedu 1L. t! Oies I ar: 'C efken or a more oser f'r:cnl' :lLe

In a vroced'ure oriented program the programs are organized around procedures and

:,ct:ons, and the progranuner decides what task needs to be done.

TABLE 1

EXAMPLE OF PROCEDUPAL ORIENTED PROGRAMMING

t2!ember = RECORD
r" " 77 =RCR

_.,aden: RECORD
PROCEDURE Sa!arv personei)

IF percne = staff member THEN calculate salar'v this wax
ELSEIF personei = pro:essor THEN calculate salarY another way
ELSEIF personel = student THEN calculate salafx third wya\

END
PROCEDL RE Exercise personel)

I F persoel = staff member THEN exercise at this time
ELSEIF personel = professor THEN exercise at another time
ELSEIF bersonel = student THEN exercise vet another time

END

TABLE2

EXAMPLE OF OBJECT ORIENTED PROGRAMMING

saff memrnber = OBJECT
PROCEDURE Salar" calculated this way

. PROCEDURE Exercise at this time[:END

rotessr - OBJECT
PROCEDURE Salarv calculated another way
PROCEDURE Exercise at another time

END
-,a t: tr = OBJECT

PROCEDURE Salarw calculated third way
PROCEDURE Exercise at vet another tirhe

END

For the examples assume a program that operates a school, in our case operates on

staff members, professors and students. The program need to implement payroll

'saiar\) and physical fitness (exercise) for the staff member, professor and student. A

very high level of pseudo code is used in the following examples just to highlight the

":.eresting points. The examples are incomplete programs (i.e. the declaration part)

"st intended as an illustration of the organizational difference between porcedural and

abject oriented programming. Both examples are supposed to solve the problem

*'.:'bau any debate of which is the best rnethodolo2 to use.

The dierence between a procedure oriented program and an object oriented

program is a matter of stv'.e. Both approaches can do exactly the same things, but each

.14w

-.. i. ** .* .. - - - * • '. . . . ,, . .-. -. . -,-- '.---v -,':::::::: ,.-.:' ',

approach has advantages in certain prograrmmniing areas. The advantages of object

oriented programming result from the simulation paradigm; in particular, they are well

suited for programs that deal with time. and changes of state in time.

There are several ways to look at the difference between object oriented

programming and procedure oriented programrmng [Ref. 2S: p. 1-47]:

I. Code viewpoint, in terms of the program structure that is created in the
program. Each object that is created can be viewed as an independent entity in
the program. Each object operates on the data passing through it according to
its own built in rules. Changing the object's methods means changes to the built
in ruies.

2. Data viewpoint, in terms of the data structures the object handles. Each object
not only stores information (data), but also processes the data. i.e. each of the
objects operates on the information within itself.

-. Structural viewpoint, in terms of the resulting way to design code the program.
Instead of piecing together smaller modules to larger ones. you
specialize modify existing objects.

B. TERMINOLOGY USED

I. General Background

The term "object oriented programming" was first used to describe Smaltalk

programrning environments developed at Xerox. Smalltalk took many of its most

:mpor ant ideas, such as classes and objects, from a simulation language called Simula

tnat was based on Algol-60, and designed in Norway in the 1960s. The two languages

are dH!_rerent in a number of ways. Simula-67 contains Algol-60 as a subset, and

supports: block structure, static (lexical) name binding, and compile time type

cnecking. Smalltalk has none of these features; it is more in the style of Lisp with

uni¢,or, representation, dynamic binding, and run time type checking. In Smailtalk the

designers combined the incremental program execution of Lisp with Simula's class and

virzuai concepts. Simula was designed from the beginning as both a system

eClscr'ption language and a simulation programming language.' [Ref. 29: p. 12S]

This thesis will use object oriented programnung concepts, terminology and

,-aracteristics from Xerox Palo Alto Research Center. The designers of Smalltalk

dec~dcd to let cve,".thing in the system be an object. This was not only applied to the

tas; dataitres, but also extended to the state of the system: activation records,

51

M "9TW-L-W-
M "I

. . -- . V.V 'a ' V .- - Z - -1 1 - - - - 11

instructions, and program counters all followed a specified format. The return address

,or every subroutine call and even the program counter is an integer offset, not an

absolute address. Everything was constrained bv this design, even the most frequently

accssed of all data, i.e the instructions. Smalltalk is defined in terms of an interpreter

ta v:rual machine with a set of instructions. Smalltalk-80 : The Language and Its

limplementation. by Adele Goldberg and David Robson plays an important role in

;is picture, and is a de facto standard when it comes to concepts and termnology for
eb-ect oriented programming. The description of Smalltalk in this thesis builds on

'ork done by Goldberg and Robson. See appendix A for terminology for

Smalitaik-SO.
The Smalltalk-S0 programming system is divided into two major components:

the Virtual Machine and the Virtual Image. Protection of the software is done by

covrhtiny the Virtual Imaae [Ref. 23: p. -]. The modular design of Smalltalk makes

thi s approach for protection feasible. The virtual machine for a particular computer

s,. stem consists of an interpreter, a storage manager, and primitives for handling the

.:-ut output devices. The virtual image is a large collection of objects that make uP

,,scripnions of classes providing basic data structures, basic graphics and text, viewing

and user interface support, compiler, decompiler, and debugger. Because Smalltaik i-

-e4ined in terms of an interpreter, the virtual machine is easy to implement. All

systems running the Smal.talk-SO programming system would therefore Lock the same

the user: each system supports bitmapped graphics and a pointing device. The

.CZ.rsarch effort in Smailtalk environments focuses on increasing the support that the

co.ruter system can provide to users without a background in computers. The

!,earch is centered on the visual impact of bitmapped graphics, on highly interactive

uer interfaces, and on increased flexibility in terms of user programmability.

These design decisions show that the human interface is given priority over

hardware considerations. Therefore Smalltalk executes rather slow due to. among

c hrs, the following reasons:

. Smalitalk is defined in terms of an interpreter, and interpreters are slow.
2. Smalltalk is uniformly object oriented and this implies a large number of

messages (procedure calls), which are time consuming.

3 Sma'ltalk creates and destroys a large number of objects. The memory
:".-anactnent system therefore has a lot to do.

There are five maor concepts in Smalltalk: objects, messages, classes,

n ,ntances. and methods !Ref. 10: p. 6-16]. The Smalltalk language is based on these

.,I,

I 4J. . .-. 7 . :."7:; - "; : ,- " "" 2 - ,: ,< , , , :, ,,.. ,, ,,., -l l l ,

five consistent abstractions. System components are represented by objects. Objects

are instances of classes. Objects interact by sending messages. Messages cause methods

to be executed. Like Lisp. Smailtalk seeks to provide uniform treatment of di"erent

kinds of information: text, graphics, symbols, and numbers. By packaging the behavior

. f each form of the information with the actual data. the information can he shared

-etween programs without changing representation.

2. Objects

Instead of two types of entity that represent information and its manipulation

independently, as in procedure oriented languages, an object oriented language like

6rSnialltalk has a single type of entity, the object that represents both. In a

programn-ing system that is uniformlly object oriented, like Smalltalk, a ciass is an

oblect itself.

An object is an instance of a class, and represents a component of an object

oriented system. The objects represent the components of a software syszem. Objects

may have a number of relationships with other objects. "One object may be part of

another object, or (as in an operating system) the owner of another object."

[Ref. 31: p. 6, An object consists of some private memory and a set of operations. The

nature of the operation o an object depends on the type of component it represents.

That 's. objects representing numbers compute arithmetic functions, etc. "At any point

in time an object has a state, which is the sum total of its relationships with all other

objects in the system. ""In systems like Smalltalk the instance variables deterndie tile

state of an object and the methods defined in the object's class determne the objects

behavior in time." [Ref. 31: p. 6) An object has the following characteristics

Re,. 31: p. 671:

1. Objects are temporal, i.e. they exist in time."

2. "Obects are mutable, and have a state."

3. "Objects can be created and destroyed."

4. "Objects are particular, and can be shared."

The first job for the designer programmer is to choose what he she wants to

he the objects in the problem he she is trying to solve. Objects can be any:hing,

exan-rles are: numbers, programs, character strings, compilers, computational

processes, text editors.

/.%%

' .4

............................. :.--

3. Messages
' "A message is a request for an object to carry out one of the operations from

its own set of operations." (Ref. 30: p. 61 The message specifies which operation it

wants, but not how the operation should oe carried out. The object to which the

Messiaze was sent deterrmnes how to pertorm the requested operation. Messages insure

the modularity of the system by specifying the type of operation desired, but not how

to Lerfcrm the operation. An objects interface is the set of messages to which the

object can respond. Interaction with an object goes through its interface, and its

nr vae memory can only be manipulated by its own operations. Messages are the oni

way to invoke an object's operations. These properties provide security since the

implementation of an object cannot depend on the internal details of other objects,

only on the message to which it responds. The essential point is that the

designer programmer decides on the data structure first, and then which routines are to

operate on these data structures. An object's private properties are a set of instance
variables that make up its private memory and a set of methods to describe how to

carry out its operations.

In the Smalltalk-SO programming system, objects and messages are used to

implement the entire programming environment. The designer programmer determines

which kind of obects should be described, and which message names provide a usefuL

vocabulary of interaction among these objects. This is an acquired design sklil, and it

tales t:n-e to master. Messages represent the interaction between the components o:-

Smaa!tak-SO: the arithmetic, control structure, file creation, text manipulation.

com-ilation, and application uses [Ref. 30: p. -40). The messages make an objects
tmaconality available to other objects, while keeping the object's implementation

hidden. The entire programming system becomes accessible as soon as the objects and

the messages are understood.

4. Classes

In Smaltalk, you describe a new type of object before creating it. When you

a., done, the description also works for a whole class of objects. Such an object

-escr.ptnon is called a class. Any object created from the description is called an

:.nsance of the class. A class includes a method for each type of operation its instances

an nerform 'Ref. 30: p. 9i.

544

' r. ,r - r-'

"The class describes the implementation of a set of objects that all represent

the same kind of system component." [Ref. 30: p. 81 In other words a class is just a

name for a particular kind of' object. The individual class describes the form of its

i.stances, private memory, and how they carry out their operations. The class provides

a! th -e information necessar, to construct and use objects of a particular kind.

:including the storage for methods. [Ref 3: p. 40]

5. Instances

An instance is one of the individual obiects described by a class. Each instance

has one class, but one class may have multiple instances. Each instance has storai1e

allocated to maintain its own state, and the state is referenced by instance variables.

Each object has its own set of instance variables. A class includes a method for each

type of operation its instances can perform. In Smalhialk the attributes of an object

are represented by instance variables, whose values are themselves objects. All

instances of a class represent the same kind of system component. This means

,ReE 30: p, 56]:
1. All instances of a class respond to the same set of methods.

2. All instances of a class have the same number of named instance variables and
use the same names to refer to them.

3. An object can have indexed instance variables only if all instances of its class
can have indexed instance variables.

6. Methods

A method in a class tells how to carty out the operation requested by a
particular type of' message. When the special type of message is sent to any instance of
the ciass, the method is executed. The class includes a method for each t.pe of

operation its instances can perform. The object's methods can access the object s own
Instance variable, but not those of any other objects. Methods are simply procedures Cr

subroutines that are invoked by sending messages to a class instance.

A small subset of the methods in Smalltalk-80 are not expressed in the

!-' Smalhalk-80 programming language [Ref. 30: p. 9]. These are the primitive methods:
.nev are built into the virtual machine, and cannot be changed by the application
p rogrammer. The primitives are invoked with messages exactly like other methods. The

purpose of the priirrutive methods is to allow access to the underlying hardware ind

vir:ual nachine structure.

55

1V*.
-. ::

I~
I ::.:-':

C. INFORMATION HIDING

I. Definition

Information hiding is to hide the data structure used in one module from the

rest of the program, i.e. prevent access to the data structure from outside of the

. . Information hiding is formalized by the following two principles [Ref 3: p.

1. 'One must provide :he intended user with all the information needed to use the
module correctly and nothing more."

2. 'One must provide the implementor with all the information needed to complete
t'e module and nothing more.

Niodularization is the division of a program into a number of independent modules.

Each module is ',ke a small program that can be implemented independently of the

other modules. The result of' each design decision can be hidden in the corresponding

modue. .- this decision is later changed only that module has to be modified. This is

caleed information hiding [Ref. 321.

Niodularization can also be viewed as taking a large complex program and

s 'L::', ,., into several little programs using the following principles [Ref. 33[:

I. Cohesion; each module should perform a single complete logical function.

2. Ccupiing: each module should have access to only those data elements that it
needs to complete the assigned task (the "need to know' factor).

T1:s is much iethe military methodology of "divide and conquer." Programs can

-.:on be ,;escne,. as a series of linked, single functional logical modules.

S 2. Information Hiding in Object Oriented Languages

In simulation it is often necessary to implement an object in terms of lower

.e el objects. To preserve the integrity of the simulation it is important to distinguish

thse objects and relationships that are part of the simulation from the objects and

,, rela::cnships that are not part of it." This distinction also facilitates "the modular

decomposition of the system." Smalltalk and Simula-67 both allow objects to be used

:n "he :mplementaticn of other objects. but they do not enforce the boundary between

:he l levels of abstraction. Enforcement of boundaries have been implemented in more

"rece: object oriented languages, including recent Simula editions. [Ref 19: p. I2

Information hidine ensures reliability, testabilitv, and modifiability of a

soft'are system oy reducing the interdependencies between software components. The

Snternal data structures and procedures can be changed without affectine the

56

'-'. ,.. .,... ,.", " - . --

Iniplenentatlon of other modules when the internal state variable of a modue is not

directv accessed from the outside. Most modern programrngnn languages support

in:frmation hiding to some degree. The on-! important exception known to me :s ISO

Pascal. which provides no way to declare static variables within *he sccpe cf a

proceure. Standard Lisp does not support information hiding either, but newer

imiem ntations of the language do; they use something jike the package" in Ada to

support this feature in Lisp. Smallitalks programming environment uses objects and
v:essages to facilitate modular design. Also other languages use objects and messages
for this purpose Simula uses them for describing simulations, and Hydra uses them- for

describing operating sstem faciities in a distributed system.

D. DATA ABSTRACTION

1. Definition
.void requiring something to be stated more than once; factor out the

recurrn pattern." [Ref. 3: p. 12] People think and understand by means of

abstraction, and abstraction is the major technique for understanding, and inventing. of'
-complex structures in the real world. An abstraction provides a simple view cf a

structure, and sunmanzes its interesting and important properties. Hoare ReC. 10: p.
S3 stated it !ike this: In the development of our understanding of compiex

-..cn. the mcst powerful tool available to human intellect is abstraction. Each

,the elements of an abstraction itself can be an abstraction for details at a lower ior

ziner, level. At a given level of abstraction the view must be simple or the abstraction
•.s~apprzpr:ae. The major idea is to use abstractions to make it easier for the human

bei-n to understand a complex problem. Data abstraction is the ability to define a
tyne bv specifying the operations that are meaningful for it, without exposing the

*- * representation of the type.

In general the introduction of an abstraction laver will reduce the efi ciency
oft the algorithms. Optimized compilers can remove this problem, but in dynanic

-'indin ianguages, like Lisp and Smalltalk, the added functionality means a significant

p . oss in perorrnance.

*-

-7' , ' -.-, " ----" - ' ." .- - -' . ' -.-" " " " .' ' . . .-- " -- " ." . - ' -.- , , 2 .', - , ,2 -, .i , " 2 -' ' '

"l" °g' . g
' "

" '- " - . - " " " '- -" "- . ' '', " = ,m i a~ l L i'Uz ,n ' "

2. Data Abstraction in Object Oriented Languages

-ccording to our definition of object oriented programming languages Pascal

and Ada are not object oriented because they do not support all four features in the

defi.:.n. Data abstraction in object oriented programming languages are discussed in

rcat:on to Pascal and Ada in this section.

Some lanzuaces. like Pascal. allow the programmers to define new data types,

)ut the representation (e.g. array, record etc.) of the type is not hidden from other

par-s of the program. When the representation is exposed, the abstract properties

cannot be assured. Given an object of a program defined type, other parts of the

program can access the representation directly and hence can violate the abstraction

properties. Object oriented programming is also an abstraction mechanism. In some

object oriented programming languages, like Smalitalk, objects that have a lot in

:ommon are grouped together in one class. This is an abstraction, but also it shows

how data abstraction can be considered a way of using information hiding. Some

people [Ref. 22: p. I1-19[view the important features of object oriented languages as
rformation hiding and data abstraction. This definition would include Ada in object

oriented languages. Our definition of object oriented programming languages excludes

a.\do, but because it is one of the newer procedural programming languages it :s

s~ud:ed. Ada includes abstractions for both control and data. The control abstraction

llnclu"Jes procedures and functions, but also assignment statements, if statements. biock

statements. etc. [Ref, 34: p. 9J. Ada uses several features, operator over.oad.....

,ener:c program units, and packages, to implement data abstraction. The data

abstraction in Ada is established at compile time.

In. for example, Smalltalk the internal structure can be hidden from other

Cbiects. This data abstraction can be illustrated with the following example: Suppose a

r rogram :s written with the purpose of playing chess, or as in this case restricted to

-mo'ement of the chess pieces. A Smalltalk program would invoke a method

move to." passing the destination scuare as a parameter. The point is that an

a,':'.:ment statement is not used to modif ' the data structure describing the chess

S:eces positions on the board. The main advantage is that both the representation of

te chess pieces and the implementation of "move to" can be changed without alterin:

rthe co.dc :n other objects that access them.

Dxna:rrc binding seems to be the only reasonable solution to the data

a .s.t" ,on ,robem i, a more general reuse of code is wantd. It is possible to '%nte

5*..-S- o

general procedures that use variables and procedures supplied by the caller

environment.

E. DYNAMIC BINDING

1. Definition
'With dynamic binding the meaning of statements and expressions are

deternned by the dynamic structure of the computation evolving in time, that is at run

tine. With static binding the meaning of statements and expressions are determined by
the static structure of the program.- [Ref. 3: p. 1191 In static scoping a procedure is
called in the environment of its definition, but in dynamic scoping a procedure is called
in the environment of its caller. Scoping rules apply uniformly to all names, not only

. for variable names. One of the advanages of dynamic scoping is that it is possible to
write a general procedure that makes use of variables and procedures supplied by the

'- - callers environment.

2. Dynamic Binding in Object Oriented Languages

The obiect oriented programming style pushes the responsibility for
intepretation of the message onto the objects themselves. Smalltalk-80 has dynamic

bindin of methods to a message based on the class of its receiver. This dynamic
,.inczn. requires a lookup of the selector in the message dictionaries of the superclass
chai.n for the receiver. Each object is sent exactly the same message selector, but the
objec: itself deternines how to perform the requested operation. This ensures that
impiementatlon of an object cannot depend on the internal details of other obiects.
only on tine message, to which they responds. The same message can elicit a dfferent
response depending on the receiving object. Smalltalk-80, for example, is a

<: ,'aically typed programming language. and is therefore generally harder to compile
,ban :nterpret. Operator overloading in Ada does not have this Form of dvnanuc

pol-morphism since the address of' the procedure invoked is fixed at compile tine
.Ref. 35: p. 1421.

-,. ." .

F. INHERITANCE

1. Definition

Inhentance is the sum total of "genetic characteristics derived or acquired

!'rc . ancestors.* [Ref. 361 Inhentance is especially concerned vith the management of

:ance, and it is the key to simulation, and reuse of code.

2. Inheritance in Object Oriented Languages

Classes are related to one another by an inheritance relationship, and

:ner:tance is fundamental to the object oriented paradigm. In Smalltalk. for instance.

nihertance is interpreted as follows [Ref. 3: p. 891:

I P' class B inherits from class A, then objects of class B supports all operations
supported by objects of class A.

2. If class B inherits from class A. then class B's instance variables are a superset
of class As instance variables.

. If class B inherits from class A. then the code of any methods not explicitly
written for class B will be obtained from class A.

Inheritance can be used to define a class in terms of one or more other classes. If a

class B inherits directly from a class A. we say that A is the parent of B and that B is

t.e chi!d of A. The terms ancestor and descendant are used as normal, and follow the

.*neritance chain.

See Figure 5,1 for a visual representation of inheritance. In this case class B

-.nherits from class A. and B is the child of parent A. Inheritance enables programmers

to create new classes of objects by specifying the difference between a new class and an

Lx:szng class. Object types can have ancestor object types from which they inherit

characteristics, and the descendant type can change characteristics inherited from its

-naCstor. Scme object oriented systems allow inheritance between all the objects n the

s stern, but normally only inheritance between classes are allowed. A class may be

,mo;i-d to create another class. The class that creates the other class is called the

,urerziass, and the other class is called the subclass. The subclass inherits ever-vthirg

,about its superclass. The terms subciass and superclass are often used arnbiccuslv to

.-rmean both direct and indirect inheritance. In Com-monObjects [Ref. 38l, for instance.

-dst:nc-icn betwecn direct and indirect inheritance is particularly important because

a..eri,,n c is a mechanism for defining objects whose interfaces include all the

, .perat~ons defined for another class without saying anything about the intcrnal
-. rersentatation. In Smalltaik. for instance. inheritance is primarily a mechar.isr ',or

aaon I 1. 1 P

A

IB)C

Figure 5.1 Inheritance Example.

'I buildling more complex code bodies out of simpler ones, and more complex data
4- structurcs out of simpler ones. A large amount of code can therefore in Smalltalk be

reusocd because it is not necessary to start from scratch each time.

G. SOMIE ADVANTAGES AND DISADVANTAGES IN OBJECT ORIENTED
PROGRAMMING

1. Advantages

In genieral the object oriented programming process is closer to the high level

.

application programming than most traditional techniques. The main point scems to

*-c that It is easier to start with an idea, and from the idea design code more easily

foicws because we do not need a complete specification of the problem to get started.

xistng objects from other programs or libraries can be used to form ncw programs

iesteau of always starting from scratch. This generally saves time. Normally the

c hjccts we start with are bug free, the specialization, changes we add to them wkill

,'p

1'ecrt'a it is easier to strtitoarea and fo the timdean o debugig des. Inorm ation

fo!cs ecue e o o neda omltespciiatonofth role t etstrtd

hiding is supported so each of the objects can be viewed as a closed universe, "here:ore

the design code is more orderly. And finally the programs are easier to maintain.

In general we do not have to worry so much about the det,-.is of the

al-or:tb.nts. but rather work wth the description of the properties of the objects we use

to bu.Id :he program. We are at a higher level of abstraction and spectcattons zt

bchav,,cr. we orriv about what to do instead of how to do :t. The 1-.rdw'Jare

resources are taking over much of the work previously done by the

designer programmer.

2. Disadvantages

NIacLennan fRet. 19: p. 1I states the following general disadvantages of c -Cct

oriented programning:

1. It is diflicult to reason about things that change in time."

2. Object oriented languages provide little ability for algebraic manipulation.

"The analysis of object oriented programs can be hard."

In addition it is hard to master object oriented languages, like Smalltalk. because there
is such an enormous number of objects available in the system. It is -enera'" easv to

2et star:ed using a subset of the system, but to use all the built in capaoi:ies in the

-irarv takes a long time to learn and master. The naring convention in Smallt-.k is

generallv better than in Lisp. i.e. the names used on objects gives a good inoicat:on ot

-,e purpose of the objects. Lisp also has a large number of functions. often .v:tlt

n-imes that do not zive a ,ood indication of the purpose of the functions.

The Smalltalk-SO system is not designed to run background proccsse, or to be

run on a time shared computer system. Much of the reason for this is all the loops in

the source code waiting for a pointing device (mouse) input, i.e. the cost 01 a ulser

,en-lvwtndow interface.

H. SUMMARY OF THE CHAPTER

The main paradigm of object oriented programrmng is sinu',iior. ('

oriented languages are organized around objects, and group data stru,:t*:re,,

routines together into ob'ects. Smalltalk-SO is a typical examnle of oGheLt ,r:..',td

prc ranmnung languages that supports the four criteria in this 'hesis: ; ic-mat,'.

,n:., data abstraction. d nan'i" bindin. and inheritance hierarchy.

-on

There are five rna~or concepts i, Srna~talk: object, message. clas. mnstar e and,,
metod.System components are represented bi objects, objcsrentacso

0")s obects inerctb se nlnz~ messaees. and nnessaizes causes mnetncs -o be

Ih-,e main ad~anages are that we ani program at a higher level! of' ahnsraczlorn

arJ ictimnof' behavior. :n adlt~on the d\ namric bind,,rig makes it, rcs-,:ie to

xr~t ceera'recdur z tat use variables and procedures supplicd by the ca11:cr's

e v. , r eni' The- disadvantages are long learnirg time due to la1rge numbers of

u>O~ n-'a~es The dynan'ac, b,:ndJinL makes the systemn slow.

-. - ------- -------

VI. INHERITANCE

A. BACKGROUND

"In a simulation of' any complexitv it is infeasible to describe the beha'.ior of
eve', indi' idual object." because the simulated 'world" consists of such an encrmous

number of oblects jRef. 311. Due to this infinite mass of information it is impossible to

represent all the details about the whole universe inside a computer system. It is easier

to group objects into classes of sirrilarily behaving individuals (abstraction. so that

their cowraion behavior can be described just once. "Abstraction is the decision to
concentrate on properties which are shared by many objects or situations in the real

world, and to ignore the differences between them." [Ref 1: p. 841 In object oriented
programmng languages, like Smaltalk, all computation is viewed as simulation, the

<paradigm supported in this thesis, and programming language objects correspond to
real world objects. Th'e purpose of a computer program is normally the modeine of

some aspect of the real world, often involving the changing relationships armong real

world ob'ects. Abstraction for the simulation, and selection of relevant subparts of the
universe. is needed in order to design and code a computer program. "The state of' the

"imulation is represented bv a finite number of objects connected b% a finite number of

..ceationships." [Ref. 3: p. 91 When a program executes, objects may be created or

- estcved, and the relationships among them may change. In addition to the real world

obects "ve hae the "nonreal" objects that can be examplified by the what if"

questions in srreadsheet applications.

B. INTENSION VERSUS EXTENSION

Because the computer is not able to represent the whole unverse in a s::nulat:on

it :s necessary to distinguish between intension and extension. In an ob'ject criented

;ian~uage, :ke Smailtaik, the entire state of the simulation is therefore represented b\ a

. n~te c'nber c ob ects cct d a :inite number of relationships. "'Iwo relaon"

66

%'

'p.-.-

So.

have the same :ntension if the, are supposed to model the exact same externa.
reationships or properties. They have the same extension if they apply to the ,ame

chblect. LRef. 31. p. 12] and extensions may %ary over time. Two relations may be

ex:e::iona~ly the same even though they are intensionallv different. The ir.ensicn o! a

:.n p :er object is the real world object it is modeling; the extension ofa computer

r:l:je set Co: reatlons t which it belongs. Objects with different intensons may

c,.,, . have the same extension. Therefore two or more computer objects that are

r d o ntode0 distinct real world objects may agree in all the modeled properties
...... re....nsps. This may happen because a computer system is unable to represent

" eve; property and relationship in the universe. The designer programmer must select

.:... ::e nuntber of these objects and relations that are relevant to the problem he she

,va:tts :o solve The progranming language system may have probiems distingushing

.nte:s>lnav distinct reations that happen to have same extension.

" C. INHERITANCE IN GENERAL

1. Inheritance versus Data Abstraction

Object oriented programnung encourages modular design and software reuse.

Data abstraction is the ability to define new types of objects whose behavior is defined

.-stractv. \ormaliv an object oriented language supports data abstraction, oy

prevet:ng an object from being manipulated by other means than via its dei:ted

external operations. The fundamental idea of inheritance is that software modules :riav

e ened as extensions (specializations) of previously defined software modules. The

or:2.na software module does not have to be modified when it is used as a basis for a
new extension. In object oriented programming where the basic software moduIes are

-based anon abstractions, an extension of a software module would then corresnord to

-a refinement (specialization) of hierarchies of abstractions.

Inheritance compronises encapsulat:on (modularization) in many oniect

"rented languages. For example Smaltalk lets the programmer access the ,nherted

instance variables. The benefits "rom encapsulation are improved understandabr.ht! of
Sroorams and eaier program modification. To be able to do debugging and cteat:2fn

*:Z r..s environments oest programming languages provide wa% .

c~r .,vent encapsulation. In Smraltaik, for example, the operation 'instVar.:.d

e.
. .

:nst\'arA::put' allow access to any named instance variable of any object Ref 3O: p.

24-1. This is special features that will not be covered more in detail. Inheritance

conm;lcates the situation by introducing a new category of client (user) for a class. In

ad::on to c!ients that simply instantiate objects of the class and perform operations

on ther. also other clients (class definitions) inherit from the class. Venn diagrams will

ne uzed as a descriptive tool in this section in order to clarify the inheritance problem.
!Ref 39: p. ?Sj.

Man: of the ideas in this section of the thesis builds on work done by Adele

Gjcid"berg and David Robson.

2. Subclassing

Single inheritance is the case where the inheriting class (the child). directly
inherits fCrom a single class, the parent. Hierarchical classification is to factor out

"conrton behavior of several classes of objects. Smalltalk and Simula do this bv

rpern'::ng classes to .-e subclasses of other classes. In our definition of object oriented

pro -ran-rnang the feature :nheritance hierarchy is the one that supports the simulation

r, arad:n, and makes the object oriented languages so special. Without inheritance the

I ad-ition of a new type of object requires writing entirely new procedures for common

orerations. There will be a great deal of similarity between these differe:,t methods, but

there .xill be a need for con:*nous rewriting of methods that differ slightly or not at all.

lnhertance can reduce this burden, and drastically reduce the number of lines of code

: n treram. Smalltalk-Sos class hierarchy builds on run time checking, and run time
'I ,:n of messages to methods.

David Sandberg [Ref. 401 describes an alternative to subclassing that uses

:ompie time typing, adds parameters to classes, and introduces a new form of class

2 caed a descriptive class. This alternative supports building larger modules !from

L mailer modules, while Smalltalk-80 encourages refining the behavior of an existing

"ass bv creating subclasses. Like subclassing, the descriptive classes allow sharng of

-Cice. -e subject of descriptive classes wii not be pursued further in this thesis.

The class structure described so far does not explicitly -rovide for any

intc-section in class membership, see Figure 6.1 for a visual representation. None of

:ne ,.asses in the figure overlap, so there are no shared objects between classes In the

Venn diagrams used in this section, the c:rcles represent the classes and the black dots

.1o instar. es. The representation of an instance of a class would then be a black dot

a.06
It)6

I

5......... .

5- & ."t? ' e .' ,
' ' t

L " _ . . .,

CLASS AU

- /U
CLASS C

I.r

4 Figure 6.1 Without Intersection in Class Membership.

The task of creating a specialization of an existing class is called subclassing,

and the existing class is a superclass of the new class. The classes in Smailtalk-So form
a tree- more than one class may share the same superclass, but each class has only one

i- me,4eiaze superclass. The root of' the tree is the class "object," this is the only class
,VI::out a defined superclass. In general the instances of a superclass cannot be

afleted b. the existence of one or more subclasses. Therefore variable names added to

a su:bclass must be difFerent from any variable declared in the superclass. The subclass

inherits instance variables, class variables, and methods from its superclass. The
subclass may add instance variables and class variables to make the subclass more

snec~aiized than the superclass from which it derives. A subclass can also override or

prc ide additional behavior to methods of a superclass. Methods are overridden when

a new method for an old method's selector is provided [Ref. 35: p. 1421. If a new
mcthod makes use of the old method in Smalltalk a message-send to the
pseudovariable "super" is embedded in the new definiton of a me:hod. Tho neW

[,'e. or may precede, follow, or surround the existing behavior.

f, :n Snailtalk. during a message-send a method is not fcound in the
•mm-diat &cass of the instance, the superclass method dictionary IS chcCked. if not

%. ~

. - - . --•. -

" m..i

- : :~~~. . .: :..

. .'. - ,.. . . .- •. ,

Figure 6.2 Subclasses.

found there either the superclass's superclass is searched and so on until the "object"

the root of t.e tree) is searched. If even the class "object" does not have a matching
sCector then an error message is returned.

Subclassing is to allow a class to include all instances of another class, but not
to allow more general sharing in class membership (i.e. riot multiple inheritance), see
Fi2ure 6.2 for a visual representation. A subclass specifies that its instances will be the

sane as instances of another class, its superclass, except for the differences that are

explicitlv stated. Smalltalk-80's subclassing is a pure hierarchical system; i.e. if there

are any instances of a class that also are instances of another class, then absolutely all

the instances of that class must be instances of the other class. In Smalltalk the classes

thenselves are considered to be objects belonging to a meta class. A meta class is a
". as whose instances themselves are classes, There is a one-to-one correspondence

- ctveen a class and its meta class.

The use of classes and metaclasses provides a mechanism for sharing
l m2 :an between different objects via inheritance. Inheritance is not the oniv

S.hcme :.r infcrmation sharine, and the requirement that each object permanently

-hcI,:ns to a class imposes constraints on the mutability of the behavior of an object.

" 6S

,....-_...-.-..- ..._ ...,..i, 'a, l

An example of another mechanism for information sharing is 'delegation' [Ref. -41: P.

6t)[. Using d'elegation, subcomputations can be passed on by an actor to another actor

Wchcontinues the processing. Delegation provides a mechanism for code sharing

wherc the control is passed to an independent actor. In inheritance mechanisms, on

the c-th-er nand. 'informration mar, be requested from a more general class to -xhich in

tar- o e~oncs, bur the control remains localized. Actors are computational agents
wncn 1, car' ut Zeir actions in response to incomningy messae.Atr nosht

Fro:edura; and declaratlive information into a single entity. High level actor laniguages

,;e tertance for conceptual organization and delegation for structurmng the 1,,,r in g

a:ca) e*,,.een different actors.

CommonObjects [Ref. 39J is an extension of Common Lisp. andi :t is

representa'tive of' a ne~v 2eneration of object oriented prograrning languages that

bidon the Smailtalk and Zetalisp experience. CommonObjects provides strona

support for encapsulation, in particular with respect to inheritance. Classes are not

3bects in ComonObiects, just as types are not objects in Common Lisp. The access

ot' a sbveto i1:5 suoertvpes is restricted to the same abstract interface as that

nresntedto users. N17ultiole inheritance, For example, from two classes w%-ith Ut:a

named1 instance variahes result in separate copies of such variables xheri an Ca

er!,,teraze is used, but only a single copy ifa non abstract user interface isue.

I::hr:r. c. in CornmonObjects, is a mechanism for defining obje:cts *vhose nede

:n.c uue a.. te operations def-ined for another class. without savin2 any:-.rig a-cut t",e

:tLtrtal reptresertat on.

3Inherited Instance Variable

Gernerally in obect oriented languages the code of a class can directly a~s

Ste:nstanceO Variables of its objects. This is trealso for the instance ri~e

1_nc e . an ancestor class. Permuttir.g access to instance variables defined, by, ancestor

,13s'eCs compromiuses the encapsulationi, and therefore weakens one of'hemao

ee:sof object oriented progranin-mm2. Th s problem with instan e \fdl~L'

r 'ue nma ny different inirienwentat:ons [Ref. 39: p. 401. Flav-ors :Ref 2-i dces n

_.c: merging of' inherited instance variables and instance vrahles definedl local> a

*,as!: 'oalak s 2nais an error if a class def'nes an instance variable withl the samne

'i.......e~ n ;:-herited inst.ance variable. The subclass (in Smailtalk- inherits bot -0h

....................L.aa~n andl methods from- its superclass, but gives itself a nlew cla'.s ae
Q,,he C..tnce of, a sucascannot a4fect the suiperclass, therefore it is ,:lcoal toadd a

variable name to a subclass that is declared with the same variable name in its

superclass. Addition of shared variables will make them accessible to the instances ct"

the subclasses of the class. This also means that a subclass has the same. or a lar2er

number of vanables than the superclass i.e. the subclass is more specialized).

.. Programmer's View of Inheritance

I. is not obvious that the designer of a programnming language, or a

progranuring enirionment, thinks of inheritance the same way a user does. For the

desi_,ner programmer the purpose of inheritance can be the following [Ref. 39: p. 41[:

I. A r vate decision taken by the designer progranmer to reuse code because it is
useful ksaves time) to do so for him her. At the same time it should be easy to
chanee such a decision later on.

2. Making a public declaration that objects of the child class obey the semantics
of the parent class. This means the child class is a specialization of the parent
ciass. Brachman covers this in depth in the context of knowledge representation
[Ref. 42: p. S0- 31.

For the programmers in object oriented programming, a single object may look

different in dtfferent cases. i.e. multiple views. That is because the programmers use

J T,,rent parts of the object, and manipulate it differently. When the multiple %iews in

aJd:ton are used in a inheritance hierarchy, there are some problems with how the

programmer understand his programming environment, which consists of a 'arge

numer of objects.

In an integrated interactive programming- environment it is important that te

user ,nterface is consistent, and as powerful as possible. Multiple inheritance. without

restri,.ticns caused by the computer system, is the most natural to use for the

rrogra:rn='er. On the other hand it is very difficult to implement multiple inheritance in

_n ;nt;cratcd software system.

:p

I,

D. MULTIPLE INHERITANCE

1. Overview

The most general way to achieve multiple inheritance in oblect crtented

.ancuaees s to allow arbitrarv intersection of'class boundaries, like in Figure 6.3 whtch

- ,,-.c.s.. ar;,itrar intersection of classes Multiple inheritance allows a situation in xv-xcn

r ,ne oh'jects are ins:ances c: t'%o or more classes, while other objects are instancC, c

-=-d

w,

only one class orthe other. Multiple inheritance is a very powerful technique for

rcusabllitv: of code, allowing the combination of more than one previously deFined

c!ass. M\ultiple 'neiacprstsproblems in terms of what is to happen if' there are

utpepaths or conf"licting instance variables. flow can we make changes to the

inhenturnce hierarchy satiely? If the use of inheritancc itself is globallv x islble (as in

nost. .npcn,.entat,.ons) changes to the inheritance hierarchy cannot be done sat'ely.

CL S

Figure 6.3 Multiple Inheritance.

In Sinalitalk-80 the implemcentation description can be modified by,% a subClass

as fcs [RUf. 30: p. 59]:

1. -1 e class name must be overIddn

2. Variables may be added.

3 Methods may be aided or o~errid2den.

1-0 O'.erride a method meians that lif asubclass adds a method wvith the ;arne selector as

a -te'nod in the superclass, the subclass's instances will respond 'o ne's,scs whthat

6%c~arb executing the necw method. Standard Smalltalk does not support general

n~ut-l~: ~r~:n~e itusc , a trce structure, i.e. each lass has onily one suncrc.:ass.

I he _'ae tree struc:ture used in Smailtalk, and the fac t that there are no hidd'en ie

effects upon other objects makes the language easy to use. In the tree structure,

essential information is highlighted on one level and the details are specified on a lower

le~ei. On, all the layers of the tree but the lowest, the objects are fairly complex. Many
cf zl-.e Ideas in this section is from Alan Snyder's work, especially f'rom his paper:
Encapsulation and Inheritance in Object-Oriented Programming Languages'

Ref' -asi: p. thiS- sn51.

luirupie inheritance means the class can have one or more parents

(uperclasses). A class can be ,,:wed as forming the root of a directed acyclic

in!,eritance graph, where each class is a node and there is an arc from each class to its

parent. 'In Smalltalk, programming language objects are grouped into classes (i.e.,

ab'stractions) of sinulanly behaving objects.- [Ref. 31: p. 5] An example of multiple

inheritance is shown in Figure 6.4 which use an acyclic graph as an illustration of the
:. pr~ tern.

B B

Figure 6.4 Example of Multiple Inheritance Acvclic Graph.

Fhere are three stratecies in common use that tn, to solke the problem with

rr :, c :heritar e. 1he first :r:ts to deal directly with the ac% 1lc iih1ritarLe graph.

I h',: hcLO'1d first flattens thc graph ir': o a linear Lhain, and :hen uses tlhe rtes Q r :: le

!

inheritance. The third, the tree solution, avoids the problems of graph oriented and

linear solutions, by duplicating nodes. These three solutions will next be covered in

more detail.

2. Graph Oriented Multiple Inheritance Solution

I Lamn-F!cs or object oriented languages that model the inheritance graph

directly are; extendced Smalltalk and Trellis Owl. The operations in these two languages

are :n!'erited along the inheritence graph until redefined in a class. The inheritance

problem arise when a single class is reachable from another by multiple paths as in

I t i:-re o 4 wlere the graph is not a tree, but an acy clic graph. [Ref. 39: p. 421

A

: B 1 B2

!C
i ci

I c re t, 5 Lxample of Altered Graph Oriented lultiple Inheritance.

In multiple mheritance one class can have more thain ore parcr.t l:' tere :s

:c .ar one parent. and te class irherits operations ',th th ame ne, .',;v:ei

r-, re ha n o'e parent. there is an cWn1t, :,:t. Ihi ide-c.t:t\ pr-s '.em %a,

C, _ee I . ;r 6 .6 rec,,mni : the operations in t',,e \-bvas

S,..]. ,.~in> ' ,k;th the graph r:cntcd soia:;en are that lor a . anr- c,:r . ",Cre

C C 1e t I :n are \arC % ',Cs. rcarde S of he ana tf., .crc arC

. , as I a he :h::: :c cra'h I I i:uits the proLram -.c: \ .

%-..........
..

the inheritance within a class without the possibility of destroying some descendant

class. i he problem is most serious it' the operation is invoked on the same set of

instance variables more than once, and if the operation on that specific class has side
e :Tc cts.

3. Linear Chain Multiple Inheritance Solution
Favors and CormnonLoops are examples of languages that use linear solution

to solve the multiple inheritance problem when the graph is not a tree, but an acycl:c

graih. 1lhese two programmng languages "first flatten the acyclic graph to a linear

,ain, without duplicates." Thereafter the result is treated as single inheritance. See

,F.i lre 6.6 for a visual representat:on of the solution. Algorithms in the language create

a total ordering that preserves the ordering along each path through the inheritance

lgraph, but unrelated classes may be inserted between a class and its original parent.
lhe computed inheritance chain may have the property that parent of a class B may be

a lass A with unknown content to the designer of class A. [Ref. 39: p. 431

B 1

B2

F. [:iure 6 [xam:Ke of6 lnerFicd IChain \iu::p!c I t'er::ance.

IN

v ,a,.,antaize ,x:th ,ix ::ncir so'2:uticn is tha. ;f .-- ore than ,<:w parent
..c.ne ,- c opr t, n -e cera,,icn 'r:t e se!ected ()tler prci-icrm's a::,c ,r)!

the "act that unrelated classes may be inser-ed between a class and its ormnnalpaet

Th-is Inserted class mnay redefine sorne operation so that the cornuncatuon between

ine child and the original paren Is broken.

2.Tree Conversion Mlultiple Inheritance Solution

L Both -:!-e Lyranh oriented and the lknear sclut~lons have some dIrawbackc, as

earlier.~ T0e tre soun a voids thI probemIs by idlplicat ng nds e
I cue .4 !'Or a vi'aal renresentation of' the solution. There are still nr es olved

Pronietx'rih niultirole inher::ance because the inheritance is not close enouoh,, totn

user s view o, rntuitipie inheritance.

Conmtnobjects is an examnple of' object oriented Lnguages xherete

semant ,s mod.els the inherntance graph ReE. ',q p. 44]:

1. Rc--Irdless of' the source it 's liezal to irnherit an operation tfrom more than)ne

2.Each narent of each class defines a completely, separate set of :nher.:e :nstance
* ;- 1arabeS. The1 dcc::c grph is conr1'TOJ into a tree by dpIlatn.e noDe1s.an

e -,"r pat .n c.reates A ;eparutc set of instance varia bles.

oS.,tuat:ons arc th7erefore Uivoided whet.re an operat~on can acc,,dentl% be inxoked n

c'ntn sante set ci:nstanice varia'i es. or where two classes conL',:t in .,~ i-e o,"

ut~nertedclas.In Common.Objec ts these probiems are co.eced I~ r:ct

c ~to re !-nner:ted instance iva.riabes. The acc:ess :q provided in the ~n

~ocrt~as. nd he ur~ :nheritanco surports e nca1p5Uar% laS JC!n,ans.

E. SINMMARY OF THE CHAPTER

lnhler:[,mce in object oriented programrurmg languages facL,'tates reUIC of01e

:'' -.j modules may be de!ined as extensions spec,,aliwation- of rytU< c:c

modules.

S :: le inher:tanlc :s 'he Le, .AI here the1 :n~rtn l*aSS dietA.iie

_ss. the parent. In ou r Cerut 0no 'Ject oriented pornruct

e ierarcn,,, :5 teCetatspot the simulatian paradcn and t

arlcttedincuce\ O ~'cOt.

ta a,0A a ~a~ r;~u~ 1...n~taces 1;ineuer ...

0.4.~.. 2~. t~. ~rKp: ltm~~~ nrt:~

more general way to achieve multiple inheritance in object oriented languagcs ,
aiow arbitrary intersection ct' class boundaries. There are three ccmumcri...
methods to solve the problem or implementing multiple inher:tance: Or:ph or:erucd
c.utiin, Linear chain solu-ion, and tree conversicn solution.

-4

1

i p

.5-

-.

imw

!11. INTERACTIVE PROGRAMIING ENVIRONMENT

A. \\HAT IS AN INTERACTIVE PROGRAM.MING ENVIRONMENT?

I Definitions
,. • . :" :, : .'": .,.: ; ' e tPro~ 7t:.P:; c' ,. '.,o l .,qc:~ti [.:: .a rc '. q ,c m "A

.; ,~~~~e:_",:,: ::, "' a* . ald ",,,e: :n ',:s he- ;or. -1 hewet: :' Z"" 2: ' ,C : ' .:e ?r'rc ra m,'m ' . , e o .z er :" n g ', , * th e .. cr \ . '. ' e

R'., 7

air e *c ct:~:.aJ:~ t c ~ h~

J.A-
..

'" N . ; , . , , . [.,

" "~~~* . ,L... ,ke. 7:. .::

* .. enc,,-.~

- lain-enance tools.

a. test programn generators.

.tracers.

dJumps arnd dupinterpreters.

i versic-i control.

C s~r~ ~o~econtrol.
~.Per "rmaInce tools.

n~eaurenenttools histogram generators

r~..iaiv~cperformance estimator.

~.o:niizers ,both object and ore oe

Q Mnor Coc

2Impact of Tools

ii :Lar tois lire becom-:nz more arid more iinporan: :n d\e~2 e

o. .~r'. en~ :~nmen>provides the a.ser x~it conversait:ona:.cest .

o2xonr:oa ore c, he i -n : Lr a -L -n i -,c r ca ,C e,, e ro'x hec en- :r :..

'Ile..tm arger thain the \Ufl. o: h 'Ingle t:

.,O:O~rnOC!rs rorten \ :e; the vsen r.v as o.:, mx:e: n

0 1me 3-,rke staLtel ion.re 'Re!

~ 'o.o :'tn an n:~ :Lked a cone or a nrarnch' ,~.e t,, i
emd ieO nOten "1,in e rev,,keen 'm:r an"I i-, 7

c ore and i,, ,-ach 5n m-- ' tte !:,,en mm

i-X e e 7L:,. va: c S -1e.t o k ~ c~n

-. . .. - . .C - d. A :npltren

mor am':tousand more praduct~ve. Thne ava labe prcgranrn'ng tools rea cr:,:-al

part ot -ne en)v:ronme-t, and much work today .s go.ng o n to =:mp'ement an"' tet ne.&

What is so Special about Programming En'irotiments

iIKrca: rozrammng en% :raCnnents h\ j heen UseCd toj hei te

.~.~rrJ~..crin the developrmnrt an-' of-t:~c at sotxare. In to.e

ron te'usCG nriCOrnpUte-r.zed roo!S 11K4 adn b'.Pec,.:.S et:. Soon :1hi,

a. >~ e~ oCanrut:nrze-l :aols like assemb1Jrs. cclc~Adhcrl~el r:;n

.. ~:oae~. T e deigers and programminers himlt1 taol, :o help lee\e.:nc:c

-. ~~ *.7mcast aid ,n :he debugging proces s. cpera!:on s,.:sten,.s and Le qe~tms

:,mge tne :computer sytmtXt ed-Ors " ease en..-% and 2n10d: It,:O, 11 ne

te\. an-o so on.

I '- .un i ue th irn about an interactive intezrated programninv environment, :s

-2t,~ uedt repres ent -and develop, other programs, and to nuar-7ulatathseote

orc~~' I a~ acth abstract tvces are entities mn the frea~teporm~r'

.c .n;n.::..ma::ruata. nu t-e pro gra 1zun an,:rOnic' nCt: v.c

ad t~~on~alessand .es" oIver :1:1,e. In-1 1!-n:n taraL:'at!ae~...

........................ aean r mav :n-terk e-, e a :':es vtIu , ~e i~.2

IZ 7 a M 77-:1 e a C)-'. :'. A~'ceaouae~:c;rnr:'!1 iraa

$2 -. .. n 3r C re~ 7.are ict 7ha 7-,7r C. n: .e a oacan

Pr:a r~ n rnon~f.ra '::~r. ~h:a u '' C>

Pro 7rro.; net n .ra n d:c a~ .;.;~

:.a~otanr~a ~s ~:na~ar~r':~a' Or~crora .. r......a;.i>L

e........................., :: ,~~atrc:>nrt~o h ~U~NAi o.

itegrated progranmrig environments I ke Interlisp and Sialla'k. Th ese two

environments are relaviely easy to extend to take care of the whole ki-e cycle also (i.e.

B. [DENTIT\ OF OBJECTS

1I Definition of Identity

* I den::t s ,h at prorper~y of an object which distinizuishes each obect Fromi ill

D' S Ref. 45: p. -4001 Tw.o d::mensionis. at least, are involked in i-lent;Iv. the

r' presen:at~on drnension mrd the temporal dimension. The representto dimens:on

c 1assifles the progran-irnng languages based on wkhether they represent the identity or'

oi: 'nv b a user srecified namne, by. its va'ue. or if it is built into the rooramrnn

gf se!IRe' 45: p. -41-4, The temporal dimension classil-es the progranir-unz

.o..~es b~ed o wheher hey pesere thir representation of' identity thn

_=_e z~ rroram or .ransact~cri, -etween transactions, or between -u ua i

Identit-v in Interacti'e Programming Environments

\I c~ o~rrn~n~.anea~esJo not d:I rentiate b)e-ween esi::'

... ,...an o-etton.an..e sa% that th e d~en-:-: is: r. r~..

esObiectsi am-ong mut,.p.e pl-zcron'1s he C;soeterot~c~to o:

77.nipuiated '-N the Sa~l- necr~r

In oi-Ject -.ctU~ to.*:C"2..t..to ~a.e'.oC

,',At)t an:NC.2 .rre. C"o 'W'A .']

1 L:.. Uj2 the C

Theidntiy s erv imor ltiven buildin2 interactive intepratedi
enionet uig bet rene rornmh~languages. The tools are tisire -ai

S.What Language to use in an Interactive Programming En'ironment
In teory%~ progranixing languages are equal!% powverful. To actual'% w.rite

toe c:e in d!:--hent :ano.uazes may be more or less easy to do for the progran'imer. but

:11at :s irreie'.antz as a tericlmeasure of power.

In general. rrog2rammi langzuages are more suitable for certain Jobs than

others: Basic is easy to learn and is good for small dialogue oriented annlications.

Fortran is weil sun.,ed f-or numnerical applications. Cobol is tailored to business data
I-r ocessir-.. Pascal is des iged for teaching structured programmimng, Ada is ideal for

.arc moede -stemis. Lisp is very good for processing symbolic inforiation.

Sina.ta.k Is designed ibcr simulati'on. APL for manipulation of vectors and matrices. C

ots,;sternm~rnrig Simu-la for discrete simulation. etc.
N AnI rnteract~ve integrated programmring eniomn cos sts of a set of'

1)nI.Poterized tools tLhat :sdesigned to help the user of the system. The p(oamJl

on' t annetstake1 cognizance not only of the technical nature ot1 tnc sot-rware

contractonpoes out allso of the social environment in wvhic i actually o .
Th poga~miJtas k takes place In various managzerial and social settino, so

cC moteraoa toos appropriate in one c:ontext and may be inappropriate a

Cairre nut seem to be easier to irno1lemnent ain interactive to.a1

-o :rarnn enivironient I n an interpretei language with dynanmi.c nnnn thr

-. ai: 22.comp:led language. Lisp and Smailtaik will there!'ore ire co.ereo in mr

,ti:. 0re~ation to Interact.,,e integra'.ed prograrrnnur.g en' ironnmnts. In Sinahud\ NW-

crmnal program executt on of LSp iS combined with Si-nuia s : .a-s suiac o

%ir , :a concepts. Smalltaik and Lisp have a lo,3t i n co mron: a Ilat set 0iUcin

.asses; , anarnic name bIndIng and run tlme type checking. Both Lisp andSa

naeamain loop xritten In :tself, SmalitAk or Lisp rsetvl.Telo:t

~mnnexecute tecomman~d. nr-ot th1e res;ult. and loUp .Ad b00th iangarU'

uarpr exploratol sOftAdre dvoment

4. Incremental Program Development

Complex problems are often difficult to specify and design. We often know we

ha e a problem, but exactlv what causes the problem and how to solke it may well be

'e J1fficuit to find. A software program will normally go through a series of changes

ovcr its 1."e cycle. In the bee:nning it may exist as a loose mental description of what

the des:c-ner rrogermmer wants the program to perform. This in turn may (or may not)

e',c e .nto a more crmal spec*.ftcation, which in turn may evolve into a design, and

yu.. iv become code in some progranmrung language. Maintenance may also be done

in t2h S:.c f.shion. See Figure T.1 for a ,isual presentation of this incremental

.r-am development.

SYSTEM

Implement,We

make a product observe whetherbased on tneorythprdc

LANGUA E APPLICATION.
% Design,

~formulate theory

baaed on experience

Figure 7.1 Incremental Development.

The program may evolve as a series of experiments, in which the result from

,re step gives the input to the design of the nex step. During this process, the

Lp.~ i r ramay undergo drastic changcs as the problem is better understood. The simple
s :c':e -the programmer starts with grows by increasing the cornplexity of the

.. i:cs. { iVe eui-.ac cment process continues recursi.elv until a finisheC' product exists.

"I :ro.v-,h can occur both 'horizontally' through the addition of mare facilities, and

0A

i " ".. " ''"."'." ".' , ",'- . .i
'" [i : ,i -N,

vertically through a deepening of existing facilities and making them more po'xerful n

some sense." (Ref. 46: p. 63
In an ideal interactive integrated prograrnmrng environment all o. thi process

, take place within the computer system, using its resources (tools, hardware, etc.)

to hep. The user of this kind of svstem seems to be more of an artist' than an

...ra.r. 1 Hshe xil hae the ideas, but use the system s resources to test and

. '.ntn nhe program us:,g :ncremental programming development.

NiacLennan fRe' 4-3j defines system development: "The entire process that

TAKes an .nitial idea in the chient s mind to a final constructed system that satisfies the

,''ent. That is, the entire life cycle' of the system, including later evoiuticn to keep the

I., ent satis-ed.' This -.eo-ion'o-e shows how dependent the, often computer illiterate.

,.e., is on flawless conmunication with the designer programmer in order to ,et .vhat

-e sne wants.

C. HOW TO PUT THE USER IN CONTROL

The fol'owing three principles can help the average user of a computer system to

:,e in control of the computer resources:

I. Responsiveness. that is that the user's action at the computer should have
d.:rect visible results.

2. Pormissiveness is to let the user, not the system. decide what to do next. The

svstem should appear modeless to the user.

." Consistency is to use the same interface for the whole environment, and for all
applications in the environment.

So me Producers of personal computers, like Apple's Macintosh and Comrnodors

-\iga, ha% e applied these principles in their systems. They have to a large degree

managed to put the user in control, but the cost has been much more complicated

application software. The burden has been moved from the user to the hardvw'are and

the"'.ro.rammers of application software.

p,8-

I.

D. LISP IN INTERACTIVE PROGRAMMING ENVIRONMENTS

I. Why use Lisp

The basic svntax In Lisp "s very simple, and the programs are natura,v

rcpreprsented in simple Lisp data structures in a way that reflects the structure of the

. 'C" Liso represents both data and programs with lists, therefore it is simple to

sri:e L:sp programs that read, preprocess, transform, and generate other Lisp

programs. Lisp requires no declarations and therefore programs can be created

incrementallv, this would normallh be difficult in a declarative language. The dynamic

t pe system and flexible data structures make Lisp well suited for badly specif.ed

pr oblerns, and very well suited for experimentation. The interpreter in Lisp perforns

nlv one action, applying a function to its argument, therefore features (tools) like
sin.ge stepping. tracing, and symbolic debuggers are easy to implement. In addition

:1e sin-ple s-yntax of Lisp makes logical presentation of code on a screen or on a page

natural and easy. The compiler some Lisp implementations have, is there just to speed

up the execution. The interpreter glues all the different tools together into an integrated

.. ;stemn. It is never necessary for the designer programmer to think of his her code as

* .:nnv:hing c:ner than the source code. Such a view is in principle possible also in

cc nl. etelv -ompf-e'Id programrming languages, but it is much harder to achieve. The

c-, e with which Lisp programs can manipulate other Lisp programs has given us a

-.v-e variet of Lisp programming tools. This library of programming tools evolved

i.-.:o a n-oranu-ing environment that supports all the phases of prograrrming: design.

c ...n.. ebuin,, , ,documentation, and maintenance. Interlisp is one example of the

.':v oroe7ranmin, environments developed around Lisp prograrm'un2 tools.

I. The Interlisp Programming Environment

a. Introduction to Interlisp

Interlisp is an interactive integrated progra.u'ning environment based on

Lisp. It is in extensive use, and has an extensive set of user facilities: including syntax

•e:xt.ension, uniform error handling, automatic error correction (DWIM. an inteorated

-Lruture based editor, a sophisticated debugger, a compiler, and a filino sstem

'Re, 4-: p. 25-34]. The system is used at many sites, mostly at education centres

.in:vcrs:,is. ad it is well documented and maintained. The lnterlisp environment

:as evoved over time in an incremental fashion. Therefore the quality of the user

."'C has been, and stil Is. less than desired. The interfaces are nconsistent and

4S

%,%
:3

- .

compex, and it Is dil.fcult to master all the tools and facilities. The unique thing :ibcut

,nte...p is the folowxn2 two attributes:

I. The high degree o tinte2ration.
2. [low easy the facihties (tools in the environment can be tailored, modified, and

extend'ed.

b. Some Facilities in Interlisp

The ,oio'_ir.2 section xii discuss some of the important facilities in

In:erl:sp. Many of the ideas are taken from Warren and Masinter: "The Interiso

Programrnu Environment" [Ref. 7I.

The residental system is defined as a system where the primarn cop of the

r.rogram resides in the programming system as a data structure. The user makes

changes to this copy during the interactive session, i.e. editing is done by modifica:on!to this data structure.

, - The file package Is defined as a set of functions, and interfaces to other

rst-cm facilities and tools. The user does not have to keep track of where things are.

and which things have changed. In modern Interlisp the file package normally operates

-2 automaticallv, transparent to the user. The user no longer has to worry about

m I n his source .es. but if he she wants to make changes to this automatic
0 ir.ene or change these operations. The general file package._... ookkeeping it is easv, to r_ d ,.

supports the abstraction that the user manipuiates his. her program as data while the

fil is just one of the possibie representations of the code.

Masterscope is an interactive program for analyzing and cross referencing

.ser orograms in order to predict the effect of a proposed change to the program.

\at.erscope 'determines which functions are called, how and where variables are

,bound, set. or referenced, which functions use particular record declaration, etc."

SRef. a": p. 30] When Masterscope performs its analysis it builds a database of the

result. The user has access to this database, and can interrogate using English like

N. qcueries. In addition Masterscope :an call the editor on all functions that contain

expressions that satisfy certain relationships specified by the user. Masterscope adds

another level of abstraction to the system because the user no longer has to rememoer

knhat was changed, and therefore needs new analysis, but the system takes care this.

The interacton between different functions are done automatically, and transparent to

Ste user.

@4

zi I

Do What I %lean DWIM is the feature that facinates me the mo,t. .e

svstern invokes DWINI when it detects an error, then the DWINI attempts to ,'cs

• -at the user intended to do. DWIN is a collection of programs that makes re-onjilie
nterpretations when given unrecognized inputs at user level. The DWI st

r. t-e"r- -h DWhe user.r an

... ,..en, to the user, and is an mportant part of the user interface. The simplest.

ano n'ast v:s:bie, part of DWINI is the spelling corrector which attempts to nd the

c.osest match within a list of relevant items. This list is easily modified, so that the user

can taiior it to his her needs. The spelling corrector can be used to enforce standards

e,,. i.e. DWINI automati,:allv transforms input to a standard syntax.

The Prograrnmers Assistant is an active intermediary between the ';ser and
the lower levels of the system. "The programmer's assistant records. in a data structure

ca'led the history list, the user's input, a description of the side effects of the operation,

and the result of the operation' [Ref. ,4": p. 321. The "undo" command is closely

related to the history list. As long as the user doesn't tell the system to do otherwise,

:'-e programmer s assistant will always be part of the user interface. In most cases the

programmer s assistant is transparent to the user, and responds to commands that

manipulate the history list. The history list keeps track of what the user has typed. so
tat keyooard input can be reused while just specif'ing what has changed. Interlisp

records absolutelv ever' change to the structure, but it does not record why it was
n..a ned.

c. Interlisp-D Programming Environment

Interlisp-D is in general lnterlisp with windows added to it, and it is an

example of a single user virtual memory. The user sees the interactive integrated

pr.zranmdng environment as a collection of windows. Each window corresponds to a

-Icre n tool, task or context. The introduction of bitmapped displayvs, pointing

devices, and windows has greatly enhanced the user interface of the Interlisp-D system.

One of the major disadvantages with standard Interlisp is its cumbersome

user interface, and Interiisp-D solves some of the problems.

8 6

;.b

_ .. . ,-..-.....- ,

E. AN OBJECT ORIENTED INTERACTIVE PROG RA\III\G
EN\IRONMENT

I Why use Smalltalk

a. Introduction

" -" Fhe Software Concers (roup at Xerox Pale -\!to Research (en-ter " u ,"<" tre _' _L -",r :t a over\'l or.. = s,, em .. i in.h
i:J.rat... systemn one n which the user cn st, 7orc,

i-.. .w4e JInd ;luate I tor2 rotann so that the sste:m can zrcw as the u ,_ers ieCas

13,ra Boththe number and kinds of sstem components should grow in propcrocn to

ezro,vth of the user s awareness of hcw to effectivev use the v'ste:.

e Nlll. The ph.,osoph, is to choose general pr:ncipies and ar',l% t:hem

" . , T'at means that if we have built some objects, we shoud' aiva.s
use en'ance these existing objects when possible instead of creating new ones r,

-cr- i:ch. The Snailtalk system lets the user make changes to the system itself whkle ct I
* anrunni. :.e. the user may crash the system by modifing some objects that are critical

,"'.r the s~stem.

The specification of SmalItalk-SO's virtual machine describes the reouired
.- .. ,,r of any interpreter. .n implementation of a Smailtalk-80 interpreter is oniv

,eqjuired to exhibit external behavior which is identical to that described by tie Icrma

: cation as it appears in "Smalitak-SO: The Language and Its Implementation" b

Gohibero. and Robson. As long as the external behavior is preserve,. the

":t.erentaticn can make design tradeoffs to increase the performance, or meet spec:ai

The choice of a programming language to implement the Smalltalk-St)

.nte.nrerer is based on the tradeoff between the performance needed, and the ease of

nr:plementation. The interpreter depends on an efficient mapping of the ',irtuai

'.achine architecture onto the available hardware resources of the processor. The

*rescu:rces Include: registers, preferred memory locations, instruction sequences, etc.

Generally a low level (assembly) language gives the impiementor total freedom, but
Ire siie must also take total responsibility for correct programming. This is in cr:rat

"0 L:b level languages where the designer of' the compiler did the genera! resource

..loca:on fwhich often is not optimal for the Smalitalk interpreter).

b. Features in Smalltalk
The user interface consists of many :acots and in the follown:x> >,:,,

Sre imporlant ones are studied mere !" deta

%S

. -. . .. - -.-.. . -. -_.p - -' !r'- -w , W .. ,'

Vie',ws are the rectangular areas on the display screen. V\ews maa %cutaii.

c-n.\ text. or.l pictures or a combination of the two. Views are the a, '

C. e"C seect a view. is to enter a window.

The browser .s a vie,,v of the classes in the Simailtalk-SY ; stem. New classes

o .r ,deJ to the ;stem. and existing classes are examined and changed. usinc the

:l-w er. Pr or n m-- 'er s in Smaltalk-SO define classes and methods ,n-rement! y by

, .".: n sten: browsers. To be able to share these class descrpt:ons ih others.

_es Are !Cor con,, tn~caton. The fles are called code fles" and allov the user to

• nutm te soarce code between one Smalltalk system and another. The f-les can

-. e _,ed to cornmuncate information from the system to itself at a later point in

:;me. The fi~e that stores changes does so by appending to it. and therefore previous

-ersions i the source code can always be found easily. This file also re-ords several

other knd of information m order to help recovery after a system crash: it marks

execuo., of an expression in a code generator, occurence of a snapshot, etc. The file
,',-a is use,"b the system to keep the source code for the methods on disk fies,

r :'er tan %ithn the memor. of a resident system.

Error reporting is suppiied with notifiers and debuggers. The process in

.vfliCfl the error is encountered is suspended and a view of this process is created. The

nctui ers give a description of the process at the time the error was encountered. The

debugger general!y gives a more detailed view, but also allows the user to change the

s,,te cf the suspended process before resuming it.

These interfaces along with the fact that Smalltalk lets the user change the

,.stem itself, so that it may crash, made it apparent that it was necessary to save to

disk t,e entire state of the system at certain times. This is called a "snapshot" of the

-svem. and is currently performed automatically from time to time. In addition the

user can Invoke the snapshot when needed. When a critical error occurs, the user

'boots and resumes' his her work from the previous state saved in the last snapshot.

In Smaiitalk-80 the snapshot is represented by the virtual image format. The "chanes

.,Ie is only altered by appending data to it, therefore any previous version can be

c. Smalltalk as a Programming Environment

The programnng process is assisted by several classes in Smalitaik- ,.
Di"f'eren" classes are used to represent the user readable code and the mac :ne

exeutaole lorr of methods. Obiects are used to represent parsers, comper,. ,in,

I-7

.-. ,
-_- --

. er 1)eonr~rs rarislate betwveen the "di0erent rcrresentaticns nci

1 -;ccts rers-~on/::ostructur.es :'Ur classes and methods Le.t'tn

rc7cc cr7ne er -tack of the S ster S state, and obecs renresent: ng hi"tcrles 'Di

4 :~cc' ±" es helpr,,ertic, ,vith oth-er rrograrnmer . [nlllb~cs io represent

t~ccx.:: 'ote::a netho. Lo ore c Ld ontexts, and are "or to stok
* ':s ro::atonr eCords ct oth er programnn svstes 1ers znthn in Simi'tok s

.coec n-, on'; obct co-n b-e bound to .~; name bCause no names -,re t ~o

"%PC~m tx e hecking, like Lisp. while 'or example Pascol and A\da hoIe

-ttc 'pe ccig -rau:type checklig lets Smailtalk allow a message to be sent

to o 00c:, only ii tlllt object has a method to respond to the m'essage. \r1V obect

Is:h te rr c-er protocol may be passed to a method. In S.malitalkitsnopsibeo
1:a - the sser- due to v~n volatin

The. un.iformiutv of Srnailtalk is only valid within the svstem itself. It is not

.~osbeto mlaintain this uniformlity In the interfaces to the external world, because the

evernal world coonsists of disk files, printers. etc. that are not Smalltalk objects. All

Smrailtalk isagahctvoriented interactive Integratedprgamn

ensh lnuz i eizids that all components inthe system that are

accss~leto the user can be presented in a m-eaningfCul way .o maI~ao an

o'ns erv :o n. Smalltalk builds on the model of Independent com-municating objectsN.

.Anr'.ca:ons wr-itten in the langzuage are viewed in the same way as tne fundamnental

units from which the s-;stem itefis built. Interaction between the most prinut'.ve

c:e cts Ts viewed inthe same way as high level interaction between the computer and

z>e. Tsr he pure object oriented Programnming languages are ideally suttzed for

ineactiv, integrated programming environments. A person wvorkingz at a troa

repnsto conditions and takes act'ons in ttme..

Most traditional system-,s are built aound a kernel of code which cmnot

~'- e modified. In the Smoll1taik. vste,-s the kernel consistq of machine cod e n

uin order LO im-1plenn-t a ,:r-tdl machline. [he kernel nust beas\ols

2os, .'>e to Prevent the needi fo requent c:honges to it. Snmaita hc:itt

~ c~c ofth sste. hcrfoexe have the promecni ot e~n'ur-1nL c

:~ ~. .t;e ':te:.1 h ~stm ti..c tkes Care :ns r-iC It i'oora

'd fS:mo>: 7- 'ht X ~e -~.~~ole N!ten: Ct _1 a, Io Av~

runin:ng Th 'e S% stem:n racer lets the user li e in the systemi he ,he . .ro~

w:thout having c) start from scratch every time the sy stem crashes. One o f the 'nenei -

.o .c teSvsten:, tracer is that it maukes "t easier to u-se a fuk ntera2 :;-e trae

7 n rou n g enivironimenizt or prod-ac::on applications, Th e total "-, emn cnta:rs

-.an%; oo." %".ltestat are not needea pntrocluction systems, i.e .compiler. dncr

ed~arccnmin~ct~n.etc. The system tracer has the ability to strip o:Y ff of' :hese

un7necessar% tools iaite.In additioni the system- tracer car. be used to Pr-odc

n'.uat~n f, existing programs. A-n example of this is how. we can :har-Le the

..oating pc,.nt nurnber. We can include an appropriate transform-ation in the systemn

tracer anid wri.te cut a mnutati of the old program, then we can replace the

routine instruction In the virtual machine and start up again with a mod~fied svstem.

This modification method has been used in Srnalltalk to change: floating point

numbrsinstruction set of the virtual machine, format of compiled methods, aind

enccd'ing of small integers [Ref. 23: p. 261.

Somne computer scientists feel that object oriented programming languages

can take over some of the roles from the operating systems. Daniel Ingalls stated it

even stroniger: 'An operating system is a collection cf things that don't lit into a

.ancaee.There shouldnt be one- [Ref. 4S[

F. SUMMARY OF CHAPTER

The unique thing about interactive integrated programmiing envirornments are

.hat they are used to represent and develop other programs, and to manipulate these

other programs. The interactive Integrated programmi-ing environment consists of a set

of tools, and a toolti anything that can help inthe programming process. Thle

intEcration of tools are veryv hard. and today it is easier to do in an interpreted

r -oz ramrnrrng language with dynarmic binding, li1ke Lisp or SmalitLalk than in a comof~led

rooarrnnglanguage. In addition Lisp and Smal11talk Facilitate increment..' -rogranl

Le; orment, i.e. the progr~am evolves as a series of experiments in whlic .h the resu:*t

ron roe step gives the input to the decsign of the next step.

1',he user :nterf'ace may bne onhanIcd if' the followving princtples are !foilowed:

.eoncnc~-. prma Ssiveness. an' con"'Istenc%.

'dI

"p.4

A1

a ~tr.~n~ SmA:.2:k. ' rc evan"Ples 1, Intcrac:,e ncric ~~:
e:~v~roaen ',hart :.-creise the pro -rammcz~r capa1nl!lt:e . I e ~t~a:-

jc.1 ne thte C r 0ta 1 s a.rg r :h a th e ~a fte :n111~

g .r

VIII. CONCLUSIONS AND RECOMM\ENDATIONS

A. CONCLUSIONS

sL. he struur e o: our 11a,~ae a. so prcgrarmng languages and rrann

en'.ronrent. eftine the boundaries of, human thought. Therefore. e'.entm n

:reoetca rower Of, -ll lariguages are: tine same. progranrming 1ianguaes and

iroramurnei env:ronrnents, at zhe miom ent. limiut human cretit anI blt osie

new . '.roe. an-' complex problems. Today s programnMIng languages and prograimminn

en%. ironments are spcaieand not wvel. suited for all types of problems.

Increased, emphasis is put on the user Interface. We have a lot of bac:kzround

knoledeIn this are, 'out ait the moment we don't know exactly how to produc e -he

optimnum user fiendly lnterface. Bitmapped displays, menus and mouse-like d'evi",:LS
-ae so fa enteslton h udni oed from the user to the hardware and

programmers of- aplication software. The unique thing about interactive int grited1

prcgramniner environments are that they are used to represent and dev-ebop otner

prograrns, and to manipulate these other programns.

In zeneral a .omogenous representation of a programming language mnakes It

L-,s:er to create an intzeractive integrated programmnring environment. Smallta'ik and

Lisp are examples of this. The languages are based on a relative small number of

consistent abstractions, and seek to provide uniform treatment of different kinds ol

.nforrnation: te-xt, graphics, symbols. and numbers.

O'bect oriented programming languages do not give technical dvantages. but

cross a tnreshoid of perception and make ~t easier for the human 1-eing to scxNe new

.in-' complex problems. To be a true obetoriented prosramrntn :ancucee fur

:c-Ures must be suppor-ted: informa:=o n-,d"'no. data abstraction, \nna ~a~e n
.ntr~nehierarchx. A\ re-sul! of' th-Xe features is that this t he sis suprpot 7te

x~lt ~nparadiOM aIS the most a7,propriate for object o r,,entzed Jieac

.. t~. ~ * .n Cxaml .. f th i knd cfIu :anuace, but in add,',,ion SatI~ ~a

................ . . J - rc- nramnn eo c,% :rnict _~seiL

-0T-

S~hta-SUis bcth a prcgraimirz !an guaize and aninteat r:c

prograraming envircnnment. The Snialitalk-SO svsiem has the Feature t : cn c:.

i n therebv produce a new :nreracrive :nteg-,raced pr-cgram:ng c. rmen

~mdo the user s :'eeds. I: can. s:.-ula~e the n ew en v ironrmen t : n e e itn z c~

C:1:,"1r ,nirL,,t 'hen Use tne %lnwlatlon to actually produce the newv sy-stem.

B. RECOMMENDATIONS

i. What Can be Done Nowv

In order to make the user reel mare comf-ortable with his her prograrn-i-ing

environmrent, niew applications should build on skills the user already has instead of'

crnghim hecr to learn new skills. The user should stay in control off the computer

throughout the session. Emphasis should be put on responsiveness, permssiveniess, and

:cnsstenc%- when the user- interf'ace is designed. A good namning convention can help

the user to easily ge t the purpose of the functions, routines, objects. etc.

Inteactve nteg1rated programming environments based on interpreted

* . nrogramng anguages like Lisp and Smalltalk seem to be best suited ,'or

*-environmients producing new programs, and not so much for pure executon cri

* ccnpu:ation hea%-;. app~ications.

2Future Research Areas

Teinteract,,:ve integ rated programmning environment of1 the fauture should pay

mcre aten":n to the total prolect development problem. Theref'ore it sh-ould lc .ast

,c aeve Coned in1 the f Oiiow'k.ni: directions:

1.Th esign. and proa,-anin:.l tools shouid hie even more integrated.

2. A200 data ase ssterr to keep track of verson s etc. isnedd

* .The project mnanagement tools mast 1,e integ-rated with thie rest o!f the- "",sten".

:nc:ludiniz the ;aa , a se.

-4, Tools to perfo rmi semanz::c in,-i, ,i, dun , rc rammnin is necec-

Reduce or e:nnt e cemantic ilff,,rences ~cwt C i;rcnt
.i.z u a g en.rrmn' sc~~tn use o, command,,iS et C.

BohLsn adSn;1a" :e- the user ma~vhts her own n.:rmet

~'v 'eJto de.w o el "hd~~J rte Or the Lr:tcmxn

* - - ocr rcd~.~cc -.Ic o m user c% en more. Deta~ici pu]u.n

Sn: ,;~t S :wno

APPENDIX A

SNIALLTALK-80 TERMIINOLOGY

Th~~~~s 0p~lh ra\o Sniaak- o s terrimno~ogy Lued ;nt 'iis

!2KS hed~ii~o~ are taken rnm Snna.:a!k-SU The LariLuaoo-- a its

lImplementation' by .- dc'e Go arierg an-- Dav,.d Robson fReft. 3

e ABSTRA-CT-CL ASS A class that specifics protocol. but :s rit ,bl t
- ~full% mirpiemnent It. by convention. , t:.e are

no: created of this kind! of class.

e CLASS An object that describes the :pe ntta,"o a
se: ci similar objects.

S INTA N CE One of the objects described b% a clas;,. '-..is
meoyand responds to mnessages.

T. -1:A([VARIABLE A '.ariable asailable to a single 0beCLZ :or he
-~e h~tne o -te oblect~ :nstance rarc

ee name trinex

*IT RFA C S Phe sct ci :re 'ae o ;x~in~h an c ,17:

A !LSA 7: reqoest fo r anP obect to carr-. out one., .

* VF.SACY SE LECTOR The, narne of' the type of- operation a m~~c

* \i1F FACLASS I he C ass c f a cas S

* \! L:T14D A\ prcdr escribing howx to perflorr one c: a
~r~ts 2:7erations: it is naoe upof i c~'

2 .te n. emr'o rar\ -a riareOLrio. aa

~oauencea: eprcssions. A method :i \C

e r ~Cs~iC nAiching its me-aize r
a an:n~anceo~ he c~ - <

-% ..

* OBJECT A componen: of the Smalltalk-SI) se
J, 4represented by some private memor a:d a set ,'

" perations.

, ()VRRIDING Specifying a method in a subclass for the sa ne
mess as a method in a superclass.

o PRI \ ITIVE An operation performed directly >v :e
sm ail-talk-SO virtual machine.

a RU(EIVER The object to which a message is sent.

o SVBCLASS A class that inherits variables and met.ods
an existing class.

* S"PERCL.\SS The class from which variables and re:-,.
inherited.

* SYSTEM The set of classes that come with "c -. .c
s vstem.

J-

@4.

I 7 D-Ai84 127 R SURVEY OF OBJECT ORIENTED LANGUAGES IN PROGRAMMING 2/2
I ENVIRONMENTS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLASSIFIED HHAOSNJN8.7F.'G t2/5 NL

41%6

iiiii ,.36

~l I

11111 -2-

MICROCOPY RESOLUTION TEST CHART

NAltnNAL BUREAU nf STANDARI 196 A

.. ,

APPENDIX B

TOWER-OF-HANOI IN PROLOG

Tower-Of-Hanoi program in Advanced A.I. Systems' Prolog, Version M-1.13. In

order to run the program you must specify the number of disks, and the names of the

three poles used.

N-r," hanoi(O,From,To,Other) : . % nothing to do.
hanoi Disk ,From,To,Other)

Diskl is Disk-i,
hanoi(Diskl,From,Other,To), % move top Disk-! aside

moe<Disk,From,To), % move Disk
hanoj(Diskl,Other,To,From). move top Disk-I back

move(Di sk ,Fronm,To) :-
nl,write('Move disk '),write(K),
write(' from pole '),write(From),
write(to pole "),write(To).

hanoi(3,polel,pole2,pole3).

.. 96

NV.N
-."

I,%°

. 4

APPENDIX C
TOWER-OF-HANOI IN LISP

The Tower-Of-Ianoi program builds on a program found in "LISP" by Winston
and Horn (Ref. 20: p. 88-901.

(defun Hanoi nil (Transfer'1 '3 '2 (read))) ;K disks on I first.
(defun MoveOisk (From To)

(print (list From '-> To)) ;Print instruction.
(terpri))

;Start new line(defun Transfer (From To Using Height)
(cond ((equal Height I1)

(MoveDisk From To)) ;Transfer one disk.(t (Transfer from ;Move from From
Using

to Using
To ;using To as space(sub 1 Height))

;(K- 1)disks.
(MoveDlsk From To) ;Move lowest disk.(Transfer Using

'Move from Using
To

to ToFrom
-using From as space

(sub I Height))))) ,(K - 1) disks.

97

- ,K! ~

APPENDIX D

TOWER-OF-HANOI IN PASCAL

The Tower-Of-Hianoi program is based on a program in "A Taste of Smalltalk'

by Ted Kaehlcr and Dave Patterson [Rcf. 49: p. 3-41. %tacPascal version 1.0 is used.

pro gram TowersOfHanoi;
var

howMany : integer; (Number of dicks)
procedure MoveTower (Height, FromPole, ToPole, UsingPole :integer);
procedure MoveDisk (FromPole, ToPole: integer);
begin

writeln(CFromPol', FromPole:3,' ToPole, ToPole :3);
end;-

begin (MoveTower)
if height > 0 then
begin

MoveTower-(Height - 1, FromPole, UsingPole, ToPole);
MoveDisk(FromPole, ToPole);
MoveTower(Height - 1, UssingPole, ToPole, FromPole);

end;
end; (oveTower)

begin (TowersOfHenol)
* showtext;-

writeln('How many disks do you want?);
read] n(howMany);
MoveTowor(howMany, 1, 3, 2);

end. (owersOt Hanoi)

939

'I.R

APPENDIX E

TOWER-OF-HANOI IN SMALLTALK-80

The Tower-Of-llanoi program is taken from "A Taste of Smalltalk" by Ted

Kachler and Dave Patterson IRef. 49].

METHOD MoveDisk:to:

moveDisk: fromPole to: toPole
"Move Disk from a pole to another pole.
Print results in the transcript window"

Transcript cr.
Transcript show: (fromPole

printString, '->', toPole printString).

'METHOD moveTower: from: to: using:

moveTower: height from: fromPole to: toPole using: usingPole
"Recursive procedure to move the disk at a height from one pole to another
using a third pin"

(height > 0) ifTrue:
self moveTower: (height - 1) from:

fromPole to: usingPole using: toPole.
* self moveDisk: fromPole to: toPole.

self moveTower (height - 1) from:
usingPole to: toPole using: fromPole]

'Run the program by selecting and choosing 'do it'.
(Object new) moveTower: 3 from: I to: 3 using: 2"

5'

99

* .W5. %

LIST OF REFERENCES

1. Morrison, Phillip and Emily, eds., Charles Babbage and His Calculating Engines,
Dover Publications, New York, 1961.

2. Whorf, Benjamin L., Language, Thought, and Reality, MIT Press, 1956.

3. MacLennan, Bruce J., Principles of Programming Languages : Design. Evaluation
and Implementation, Holt, Rheinhart and Winston, 1983.

4. Barstow, David R., Shrobe, Howard E., and Sandewall. Erik, Interactive
Programming Environments, McGraw-Hill Book Company, 1984.

5. Miller, L. A., Natural Language Programming: Styles, strategies, and contrasts,
IBM System Journal, Vol. 20, No. 2, 1981.

6. Ardir, Mark, Tutorial Notes: Software Development Environments, IEEE
Computer Society, 1987.

7. Batimo, J., Smaltalk with Alan Kay, Information World, Vol. 6, No. 24, June
1984.

8. Brooks, Ruven, Towards a theory of the cognitive process in computer
programming, Int.J.Man-Mach.Stud.9, 1977.

9. Weinberg, Gerald M., The Psychology of Computer Programming, Van Nostrand
Reinhold Company, New York, 1971.

10. Dahl. Ole-Johan, Dijkstra, Edsger W., and Hoare, C. A. R.. Structured
Programming, Academic Press, New York, 1972.

11. Parnas, David L., Software Aspects of Strategic Defense Systems. Communication
of the ACM, Vol. 28, No. 12, December 1985.

. 12. Uebbing, Johan and Young, Charles. User Interface Performance Issues, BYTE,
August 1986.

13. Monk. Andrew, Fundamentals of Human-Computer Interaction, Academic Press.
New York, 1985.

1O
4

14. Brooks, Ruven, A theoretical analysis of the role of documentation in the
comprehension of computer programs, Proceedings of Human Factors in
Computer Systems, Gaitersburg, Meryland, 1982.

15. Kowalski. Robert, Algorithm = Logic + Control. Communications of the ACM.
Vol. 22. No. 7. July 1979.

16. Booch. Grady, Software Engineering with ADA, Benjamin Cummings Publication
Co., 1983.

1. Weinberg. Gerald M., Rethinking Systems Analysis and Design, Boston, Little,
Brown. 1982.

IS. Miller. George A., The Magical N\umber Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information, The Psychological Review. March
1956.

19. NacLennan. Bruce J., A Simple Software Environment Based on Objects and
Relations, NPS52-85-005, Naval Postgraduate School, Monterey, California,
19S5.

20. Winston. Patrick Henry and Horn, Berthold Klaus Paul. Lisp. Addison-Wesley
Publishing Company. 1981.

21. Rowe, Nell C., Artificial wtelligence, Unpublished, Naval Postgraduate School.
Monterey. California, 1986.

22 Buzzard, C D. and Mudge, T. N., Object-Based computing and the Ada Language.
IEEE Computer, March 1985.

23. Krasner, Glenn, Smalltalk.80: Bits of History, Words of Advice, Addison-Wesley
Publishing Company, 1983.

, 24. Kay. .Allan C.. Microelectronics and the personal computer, Scientific American,
September 19".

25. Stefik, Mark and Bobrow, Daniel G., Object-Oriented Programming: Themes and
Variations, Al Magazine, Vol. 6. Nc. 3. 1986.

26 Robson, David, Object-Oriented Software Systems, BYTE, August 1981.

2-. Mvloon, David A.. Object-Oriented-Programming with Flavors, Association .or
Compilting Machinery, OOPSLA, 1986.

28. Apple. AIPW Pascal Language, APDA#KMSPWP, Apple Programmers and
', Developers Association, 1986.

101

29. Nygaard. Kristen, Basic Concepts in Object Oriented Programming, ACM Sigplan
Notices Vol. 21, No. 10, October 1986.

30. Goldberg, Adele and Robson, David, Smalltalk-80: The Language and its
Implementation, Addison-Wesley Publishing Company, California, 1983.

S1. MacLennan. Bruce J., A View of Object-Oriented Programming, NPS53-83-001,
Nasal Pos'graduate School, Monterey. California, 1983.

32. Parnas, David L., On the Criteria To Be Used in Decomposing Systems into
.Modules, Association for Computing Machinery, 1972.

3 3. Davis. William S., Systems Analysis and Design, Addison-Wesley Publishing
Company, 1983.

34. Bray, Gary and Pokrass, David. Understanding Ada: A Software Engineering
Approach, John Wiley and Sons, New York, 1985.

35. Pascoe, Geoffrey, A., Elements of Object-Oriented Programming, BYTE, August
19S6.

36. Webster, Webster's Third New International Dictionary, G. & C. Merriam
Company, Massachusetts, 1961.

3'. Strom, Rob, A Comparison of the Object-Oriented and Process Paradigms, ACM
Sigplan Notices, Vol. 21, No. 10, October 1986.

3S. Snyder, Alan, CommonObjects: An Overview, ACM Sigplan Notices, Vol. 21. No.
10, October 1986.

9. Snyder, Alan, Encapsulation and Inheritance in Object-Oriented Programming
Languages, ACM Sigplan Notices, Vol. 21, No 11, November 1986.

40. Sandberg, David, An Alternative to Subclassing, Association for Computing
Machinery, OOPSLA, 1986.

-41. Agha, Gul, An Overview of Actor Languages, ACM Sigplan Notices, Vol. 21, No.
10, October 1986.

-42. Brachman, Ronald J., I Lied about the Trees, Al Magazine, Fall, 1985.

43, MacLennan, Bruce J., CS 4150 Lecture Notes, Unpublished, Naval Postgraduate
School, Monterey, California. 1987.

.4-4. Burke, J., Connections, Little, Brown, Boston, 1978.

102

| 'S

45. Khoshafian, Setrag N., Object Identity, Association for Computing .Machinery,
OOPSLA, 1986.

46. Sandewall, Erik, The Lisp Experience, Interactive Programming Environments,
McGraw-Hill Book Company. 1984.

47. Teidelman. Warren and Masinter, Larry, The nterlisp Programming Environment
IEEE, Computer, April 1981.

, 48. Ingals, Daniel, Design Principles Behind Smai/talk, BYTE, August 1981.

49. Kaehler. Ted and Patterson, Dave, 4 Taste of Smalltalk, W. W. Norton and
Company, New York, 1986.

'1

-'S

103

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria. VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chief of Naval Operations
Director, Information Systems (OP-945)
Navy Department
Washington, DC 20350-2000

-4. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Professor Bruce J. MacLennan, Code 52M1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Protessor Gordon Bradley, Code 52Bz
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

. Harald Haakonsen 3
Hoegsetevegen 3B
N.5047 Fana
Norway

104

-S

IR

4or

